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About this edition

This edition was published in June 2023.

In writing this edition, I’ve gone over every word in every chapter ensuring everything
is up-to-date with the latest editions of Docker and latest trends in the industry. I’ve also
removed repetitions and made every chapter more concise.

Major changes include:

• Added sections on multi-platform builds with buildx

• Updated the Compose chapter to be in-line with the Compose Spec

• New example apps

• Updated all images to higher quality

• Added Multipass as a simple way to get a Docker lab

Enjoy the book and get ready to master containers!

Nigel Poulton
(c) 2023 Nigel Poulton Ltd
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0: About the book
This is a book about Docker, no prior knowledge required. In fact, the motto of the book
is Zero to Docker in a single book.

So, if you’re involved in the development and operations of cloud-native microservices
apps and need to learn Docker, or if you want to be involved in that stuff, this book is
dedicated to you.

Why should I read this book or care about Docker?

Docker is here and there’s no point hiding. If you want the best jobs working on the
best technologies, you need to know Docker and containers. Docker and containers
are central to Kubernetes, and knowing how they work will help you learn Kubernetes.
They’re also positioned well for emerging cloud technologies such as WebAssembly on
the server.

What if I’m not a developer

If you think Docker is just for developers, prepare to have your world turned upside-
down.

Most applications, even the funky cloud-native microservices ones, need high-perfor-
mance production-grade infrastructure to run on. If you think traditional developers
are going to take care of that, think again. To cut a long story short, if you want to thrive
in the modern cloud-first world, you need to know Docker. But don’t stress, this book
will give you all the skills you need.

Should I buy the book if I’ve already watched your
video training courses?

The choice is yours, but I normally recommend people watch my videos and read my
books. And no, it’s not to make me rich. Learning via different mediums is a proven way
to learn fast. So, I recommend you read my books, watch my videos, and get as much
hands-on experience as possible.



2 0: About the book

Also, if you like my video courses1 you’ll probably like the book. If you don’t like my
video courses you probably won’t like the book.

If you haven’t watched my video courses, you should! They’re fast-paced, lots of fun, and
get rave reviews.

How the book is organized

I’ve divided the book into two sections:

1. The big picture stuff

2. The technical stuff

The big picture stuff covers things like:

• What is Docker

• Why do we have containers

• What does jargon like “cloud-native” and “microservices” mean…

It’s the kind of stuff that you need to know if you want a rounded knowledge of Docker
and containers.

The technical stuff is where you’ll find everything you need to start working with
Docker. It gets into the detail of images, containers, and the increasingly important topic
of orchestration. It even cover’s the stuff that enterprises love — TLS, image signing, high-
availability, backups, and more.

Each chapter covers theory and includes plenty of commands and examples.

Most of the chapters in the technical stuff section are divided into three parts:

• The TLDR

• The Deep Dive

• The Commands

The TLDR gives you two or three paragraphs that you can use to explain the topic at the
coffee machine. They’re also a great place to remind you what something is about.

The Deep Dive explains how things work and gives examples.

The Commands lists all the relevant commands in an easy-to-read list with brief re-
minders of what each one does.

I think you’ll love that format.
1https://app.pluralsight.com/library/search?q=nigel+poulton

https://app.pluralsight.com/library/search?q=nigel+poulton
https://app.pluralsight.com/library/search?q=nigel+poulton
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Editions of the book

Docker and the cloud-native ecosystem is developing fast. As a result, I’m committed to
updating the book approximately every year.

If that sounds excessive, welcome to the new normal.

We no-longer live in a world where a 4-year-old book on a technology like Docker is
valuable. That makes my life as an author really hard, but I’m not going to argue with the
truth.

Having problems getting the latest updates on your
Kindle?

It’s come to my attention that Kindle doesn’t always download the latest version of the
book. To fix this:

Go to http://amzn.to/2l53jdg

Under Quick Solutions (on the left) select Digital Purchases. Search for your
purchase of Docker Deep Dive kindle edition and select Content and Devices. Your
purchase should show up in the list with a button that says “Update Available”. Click that
button. Delete your old version on your Kindle and download the new one.

If this doesn’t work, contact Kindle support and they’ll resolve the issue for you.
https://kdp.amazon.com/en_US/self-publishing/contact-us/.

Leave a review

Last but not least… be a legend and write a quick review on Amazon and Goodreads.
You can even do this if you bought the book from a different reseller.

That’s everything. Let’s get rocking with Docker!





Part 1: The big picture stuff





1: Containers from 30,000 feet
Containers have taken over the world!

In this chapter we’ll get into things like; why we have containers, what they do for us,
and where we can use them.

The bad old days

Applications are at the heart of businesses. If applications break, businesses break.
Sometimes they even go bust. These statements get truer every day!

Most applications run on servers. In the past we could only run one application per
server. The open-systems world of Windows and Linux just didn’t have the technologies
to safely and securely run multiple applications on the same server.

As a result, the story went something like this… Every time the business needed a new
application, the IT department would buy a new server. Most of the time nobody knew
the performance requirements of the new application, forcing the IT department to
make guesses when choosing the model and size of the server to buy.

As a result, IT did the only thing it could do — it bought big fast servers that cost a lot
of money. After all, the last thing anyone wanted, including the business, was under-
powered servers unable to execute transactions and potentially losing customers and
revenue. So, IT bought big. This resulted in over-powered servers operating as low as 5-
10% of their potential capacity. A tragic waste of company capital and environmental
resources!

Hello VMware!

Amid all of this, VMware, Inc. gave the world a gift — the virtual machine (VM).
And almost overnight, the world changed into a much better place. We finally had a
technology that allowed us to run multiple business applications safely on a single server.
Cue wild celebrations!

This was a game changer. IT departments no longer needed to procure a brand-new
oversized server every time the business needed a new application. More often than
not, they could run new apps on existing servers that were sitting around with spare
capacity.



8 1: Containers from 30,000 feet

All of a sudden, we could squeeze massive amounts of value out of existing corporate
assets, resulting in a lot more bang for the company’s buck ($).

VMwarts

But… and there’s always a but! As great as VMs are, they’re far from perfect!

The fact that every VM requires its own dedicated operating system (OS) is a major flaw.
Every OS consumes CPU, RAM and other resources that could otherwise be used to
power more applications. Every OS needs patching and monitoring. And in some cases,
every OS requires a license. All of this results in wasted time and resources.

The VMmodel has other challenges too. VMs are slow to boot, and portability isn’t
great — migrating and moving VMworkloads between hypervisors and cloud platforms
is harder than it needs to be.

Hello Containers!

For a long time, the big web-scale players, like Google, have been using container
technologies to address the shortcomings of the VMmodel.

In the container model, the container is roughly analogous to the VM. A major differ-
ence is that containers do not require their own full-blown OS. In fact, all containers
on a single host share the host’s OS. This frees up huge amounts of system resources
such as CPU, RAM, and storage. It also reduces potential licensing costs and reduces
the overhead of OS patching and other maintenance. Net result: savings on the time,
resource, and capital fronts.

Containers are also fast to start and ultra-portable. Moving container workloads from
your laptop, to the cloud, and then to VMs or bare metal in your data center is a breeze.

Linux containers

Modern containers started in the Linux world and are the product of an immense
amount of work from a wide variety of people over a long period of time. Just as one
example, Google LLC has contributed many container-related technologies to the Linux
kernel. Without these, and other contributions, we wouldn’t have modern containers
today.

Some of the major technologies that enabled the massive growth of containers in recent
years include; kernel namespaces, control groups, capabilities, and of courseDocker.
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To re-emphasize what was said earlier — the modern container ecosystem is deeply
indebted to the many individuals and organizations that laid the strong foundations that
we currently build on. Thank you!

Despite all of this, containers remained complex and outside of the reach of most
organizations. It wasn’t until Docker came along that containers were effectively
democratized and accessible to the masses.

Note: There are many operating system virtualization technologies similar
to containers that pre-date Docker and modern containers. Some even date
back to System/360 on the Mainframe. BSD Jails and Solaris Zones are some
other well-known examples of Unix-type container technologies. However,
in this book we are restricting our conversation to modern containersmade
popular by Docker.

Hello Docker!

We’ll talk about Docker in a bit more detail in the next chapter. But for now, it’s enough
to say that Docker was the magic that made Linux containers usable for mere mortals.
Put another way, Docker, Inc. made containers simple!

Docker and Windows

Microsoft has worked extremely hard to bring Docker and container technologies to the
Windows platform.

At the time of writing, Windows desktop and server platforms support both of the
following:

• Windows containers

• Linux containers

Windows containers run Windows apps that require a host system with a Windows kernel.
Windows 10 and Windows 11, as well as all modern versions of Windows Server, have
native support Windows containers.

Any Windows host running the WSL 2 (Windows Subsystem for Linux) can also run
Linux containers. This makes Windows 10 and 11 great platforms for developing and
testing Windows and Linux containers.
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However, despite all of the work Microsoft has done developingWindows containers, the
vast majority of containers are Linux containers. This is because Linux containers are
smaller and faster, and the majority of tooling exists for Linux.

All of the examples in this edition of the book are Linux containers.

Windows containers vs Linux containers

It’s vital to understand that a container shares the kernel of the host it’s running on.
This means containerized Windows apps need a host with a Windows kernel, whereas
containerized Linux apps need a host with a Linux kernel. Only… it’s not always that
simple.

As previously mentioned, it’s possible to run Linux containers on Windows machines
with the WSL 2 backend installed.

What about Mac containers?

There is currently no such thing as Mac containers.

However, you can run Linux containers on your Mac using Docker Desktop. This works
by seamlessly running your containers inside of a lightweight Linux VM on your Mac.
It’s extremely popular with developers, who can easily develop and test Linux containers
on their Mac.

What about Kubernetes

Kubernetes is an open-source project out of Google that has quickly emerged as the de
facto orchestrator of containerized apps. That’s just a fancy way of saying Kubernetes is
the most popular tool for deploying and managing containerized apps.

Note: A containerized app is an application running as a container.

Kubernetes used to use Docker as its default container runtime – the low-level technology
that pulls images and starts and stops containers. However, modern Kubernetes clusters
have a pluggable container runtime interface (CRI) that makes it easy to swap-out
different container runtimes. At the time of writing, most new Kubernetes clusters use
containerd. We’ll cover more on containerd later in the book, but for now it’s enough
to know that containerd is the small specialized part of Docker that does the low-level
tasks of starting and stopping containers.
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Check out these resources if you need to learn Kubernetes.Quick Start Kubernetes is
∼100 pages and will get you up-to-speed with Kubernetes in a day! The Kubernetes
Book is a lot more comprehensive and will get you very close to being a Kubernetes
expert.

Chapter Summary

We used to live in a world where every time the business needed a new application we
had to buy a brand-new server. VMware came along and allowed us to drive more value
out of new and existing IT assets. As good as VMware and the VMmodel is, it’s not
perfect. Following the success of VMware and hypervisors came a newer more efficient
and portable virtualization technology called containers. But containers were initially
hard to implement and were only found in the data centers of web giants that had Linux
kernel engineers on staff. Docker came along and made containers easy and accessible to
the masses.

Speaking of Docker… let’s go find who, why, and what Docker is!





2: Docker
No book or conversation about containers is complete without talking about Docker.
But when we say “Docker”, we can be referring to either of the following:

1. Docker, Inc. the company

2. Docker the technology

Docker - The TLDR

Docker is software that runs on Linux and Windows. It creates, manages, and can even
orchestrate containers. The software is currently built from various tools from the
Moby open-source project. Docker, Inc. is the company that created the technology and
continues to create technologies and solutions that make it easier to get the code on
your laptop running in the cloud.

That’s the quick version. Let’s dive a bit deeper.

Docker, Inc.

Docker, Inc. is a technology company based out of San Francisco founded by French-
born American developer and entrepreneur Solomon Hykes. Solomon is no longer at
the company.

Figure 2.1 Docker, Inc. logo.
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The company started out as a platform as a service (PaaS) provider called dotCloud.
Behind the scenes, the dotCloud platform was built on Linux containers. To help create
and manage these containers, they built an in-house tool that they eventually nick-
named “Docker”. And that’s how the Docker technology was born!

It’s also interesting to know that the word “Docker” comes from a British expression
meaning dock worker — somebody who loads and unloads cargo from ships.

In 2013 they got rid of the struggling PaaS side of the business, rebranded the company
as “Docker, Inc.”, and focussed on bringing Docker and containers to the world. They’ve
been immensely successful in this endeavour.

Throughout this book we’ll use the term “Docker, Inc.” when referring to Docker the
company. All other uses of the term “Docker” will refer to the technology.

The Docker technology

When most people talk about Docker, they’re referring to the technology that runs
containers. However, there are at least three things to be aware of when referring to
Docker as a technology:

1. The runtime

2. The daemon (a.k.a. engine)

3. The orchestrator

Figure 2.2 shows the three layers and will be a useful reference as we explain each
component. We’ll get deeper into each later in the book.
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Figure 2.2 Docker architecture.

The runtime operates at the lowest level and is responsible for starting and stopping
containers (this includes building all of the OS constructs such as namespaces and
cgroups). Docker implements a tiered runtime architecture with high-level and low-
level runtimes that work together.

The low-level runtime is called runc and is the reference implementation of Open
Containers Initiative (OCI) runtime-spec. Its job is to interface with the underlying OS
and start and stop containers. Every container on a Docker node was created and started
by an instance of runc.

The higher-level runtime is called containerd. This manages the entire container lifecy-
cle including pulling images and managing runc instances. containerd is pronounced
“container-dee’ and is a graduated CNCF project used by Docker and Kubernetes.

A typical Docker installation has a single long-running containerd process instructing
runc to start and stop containers. runc is never a long-running process and exits as soon
as a container is started.

The Docker daemon (dockerd) sits above containerd and performs higher-level tasks
such as exposing the Docker API, managing images, managing volumes, managing
networks, and more…
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A major job of the Docker daemon is to provide an easy-to-use standard interface that
abstracts the lower levels.

Docker also has native support for managing clusters of nodes running Docker. These
clusters are called swarms and the native technology is called Docker Swarm. Docker
Swarm is easy-to-use and many companies are using it in real-world production. It’s
a lot simpler to install and manage than Kubernetes but lacks a lot of the advanced
features and ecosystem of Kubernetes.

The Open Container Initiative (OCI)

Earlier in the chapter we mentioned the Open Containers Initiative — OCI2.

The OCI is a governance council responsible for standardizing the low-level fundamen-
tal components of container infrastructure. In particular it focusses on image format and
container runtime (don’t worry if you’re not comfortable with these terms yet, we’ll cover
them in the book).

It’s also true that no discussion of the OCI is complete without mentioning a bit of
history. And as with all accounts of history, the version you get depends on who’s doing
the talking. So, this is container history according to Nigel :-D

From day one, use of Docker grew like crazy. More and more people used it in more and
more ways for more and more things. So, it was inevitable that some parties would get
frustrated. This is normal and healthy.

The TLDR of this history according to Nigel is that a company called CoreOS (acquired
by Red Hat which was then acquired by IBM) didn’t like the way Docker did certain
things. So, they created an open standard called appc3 that defined things like image
format and container runtime. They also created an implementation of the spec called
rkt (pronounced “rocket”).

This put the container ecosystem in an awkward position with two competing stan-
dards.

Getting back to the story, this threatened to fracture the ecosystem and present users
and customers with a dilemma. While competition is usually a good thing, competing
standards is usually not. They cause confusion and slowdown user adoption. Not good
for anybody.

With this in mind, everybody did their best to act like adults and came together to form
the OCI — a lightweight agile council to govern container standards.

At the time of writing, the OCI has published two specifications (standards) -

2https://www.opencontainers.org
3https://github.com/appc/spec/

https://www.opencontainers.org/
https://github.com/appc/spec/
https://www.opencontainers.org/
https://github.com/appc/spec/
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• The image-spec4

• The runtime-spec5

• The distribution-spec6

An analogy that’s often used when referring to these two standards is rail tracks. These
two standards are like agreeing on standard sizes and properties of rail tracks, leaving
everyone else free to build better trains, better carriages, better signalling systems, better
stations… all safe in the knowledge that they’ll work on the standardized tracks. Nobody
wants two competing standards for rail track sizes!

It’s fair to say that the OCI specifications have had a major impact on the architecture
and design of the core Docker product. All modern versions of Docker and Docker Hub
implement the OCI specifications.

The OCI is organized under the auspices of the Linux Foundation.

Chapter summary

In this chapter, we learned about Docker, Inc. the company, and the Docker technology.

Docker, Inc. is a technology company out of San Francisco with an ambition to change
the way we do software. They were arguably the first-movers and instigators of the
modern container revolution.

The Docker technology focuses on running and managing application containers. It
runs on Linux and Windows, can be installed almost anywhere, and is currently the
most popular container runtime used by Kubernetes.

The Open Container Initiative (OCI) was instrumental in standardizing low-level
container technologies such as runtimes, image format, and registries.

4https://github.com/opencontainers/image-spec
5https://github.com/opencontainers/runtime-spec
6https://github.com/opencontainers/distribution-spec

https://github.com/opencontainers/image-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/distribution-spec
https://github.com/opencontainers/image-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/distribution-spec




3: Installing Docker
There are lots of ways and places to install Docker. There’s Windows, Mac, and Linux.
You can install in the cloud, on premises, and on your laptop. And there are manual
installs, scripted installs, wizard-based installs…

But don’t let that scare you. They’re all really easy, and a simple search for “how to install
docker on <insert your choice here>” will reveal up-to-date instructions that are easy to
follow. As a result, we won’t waste too much space here. We’ll cover the following.

• Docker Desktop
– Windows
– MacOS

• Multipass

• Server installs on
– Linux

• Play with Docker

Docker Desktop

Docker Desktop is a desktop app from Docker, Inc. that makes it super-easy to work
with containers. It includes the Docker engine, a slick UI, and an extension system with
a marketplace. These extensions add some very useful features to Docker Desktop such
as scanning images for vulnerabilities and making it easy to manage images and disk
space.

Docker Desktop is free for educational purposes, but you’ll have to pay if you start using
it for work and your company has over 250 employees or does more than $10M in
annual revenue.

It runs on 64-bit versions of Windows 10, Windows 11, MacOS, and Linux.

Once installed, you have a fully working Docker environment that’s great for devel-
opment, testing, and learning. It includes Docker Compose and you can even enable a
single-node Kubernetes cluster if you need to learn Kubernetes.

Docker Desktop on Windows can run native Windows containers as well as Linux
containers. Docker Desktop on Mac and Linux can only run Linux containers.

We’ll walk through the process of installing on Windows and MacOS.
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Windows pre-reqs

Docker Desktop on Windows requires all of the following:

• 64-bit version of Windows 10/11

• Hardware virtualization support must be enabled in your system’s BIOS

• WSL 2

Be very careful changing anything in your system’s BIOS.

Installing Docker Desktop on Windows 10 and 11

Search the internet or ask your AI assistant how to “install Docker Desktop on Win-
dows”. This will take you to the relevant download page where you can download the
installer and follow the instructions. You may need to install and enable the WSL 2
backend (Windows Subsystem for Linux).

Once the installation is complete you may have to manually start Docker Desktop from
the Windows Start menu. It may take a minute to start but you can watch the start
progress via the animated whale icon on the Windows task bar at the bottom of the
screen.

Once it’s up and running you can open a terminal and type some simple docker
commands.

$ docker version
Client:
Cloud integration: v1.0.31
Version: 20.10.23
API version: 1.41
Go version: go1.18.10
Git commit: 7155243
Built: Thu Jan 19 01:20:44 2023
OS/Arch: linux/amd64
Context: default
Experimental: true
Server:
Engine:
Version: 20.10.23
<Snip>
OS/Arch: linux/amd64
Experimental: true

Notice the output is showing OS/Arch: linux/amd64 for the Server component. This is
because a default installation assumes you’ll be working with Linux containers.
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You can easily switch toWindows containers by right-clicking the Docker whale icon in
the Windows notifications tray and selecting Switch to Windows containers....

Be aware that any existing Linux containers will keep running in the background but
you won’t be able to see or manage them until you switch back to Linux containers
mode.

Run another docker version command and look for the windows/amd64 line in the
Server section of the output.

C:\> docker version
Client:
<Snip>

Server:
Engine:
<Snip>
OS/Arch: windows/amd64
Experimental: true

You can now run and manage Windows containers (containers running Windows
applications).

Congratulations. You now have a working installation of Docker on your Windows
machine.

Installing Docker Desktop on Mac

Docker Desktop for Mac is like Docker Desktop on Windows — a packaged product
with a slick UI that gets you a single-engine installation of Docker that’s ideal for local
development needs. You can also enable a single-node Kubernetes cluster.

Before proceeding with the installation, it’s worth noting that Docker Desktop on Mac
installs all of the Docker engine components in a lightweight Linux VM that seamlessly
exposes the API to your local Mac environment. This means you can open a terminal on
your Mac and use the regular Docker commands without ever knowing it’s all running
in a hidden VM. This is why Docker Desktop on Mac only work with Linux containers
– it’s all running inside a Linux VM. This is fine as Linux is where most of the container
action is.

Figure 3.1 shows the high-level architecture for Docker Desktop on Mac.
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Figure 3.1

The simplest way to install Docker Desktop on your Mac is to search the web or ask
your AI how to “install Docker Desktop on MacOS”. Follow the links to the download
and then complete the simple installer.

Once the installation is complete you may have to manually start Docker Desktop from
the MacOS Launchpad. It may take a minute to start but you can watch the animated
Docker whale icon in the status bar at the top of your screen. Once it’s started you can
click the whale icon to manage Docker Desktop.

Open a terminal window and run some regular Docker commands. Try the following.

$ docker version

Client:
Cloud integration: v1.0.31
Version: 23.0.5
API version: 1.42
<Snip>
OS/Arch: darwin/arm64
Context: desktop-linux

Server: Docker Desktop 4.19.0 (106363)
Engine:
Version: dev
API version: 1.43 (minimum version 1.12)
<Snip>
OS/Arch: linux/arm64
Experimental: false

containerd:
Version: 1.6.20
GitCommit: 2806fc1057397dbaeefbea0e4e17bddfbd388f38

runc:
Version: 1.1.5
GitCommit: v1.1.5-0-gf19387a
<Snip>

Notice that the OS/Arch: for the Server component is showing as linux/amd64 or
linux/arm64. This is because the daemon is running inside the Linux VMmentioned
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earlier. The Client component is a native Mac application and runs directly on the Mac
OS Darwin kernel which is why it shows as either darwin/amd64 or darwin/arm64.

You can now use Docker on your Mac.

Installing Docker with Multipass

Multipass is a free tool for creating cloud-style Linux VMs on your Linux, Mac, or Win-
dows machine. It’s my go-to choice for Docker testing on my laptop as it’s incredibly
easy to spin-up and tear-down Docker VMs.

Just go to https://multipass.run/install and install the right edition for your
hardware and OS.

Once installed you’ll only need the following three commands:

$ multipass launch
$ multipass ls
$ multipass shell

Let’s see how to launch and connect to a new VM that will have Docker pre-installed.

Run the following command to create a new VM called node1 based on the docker
image. The docker image has Docker pre-installed and ready to go.

$ multipass launch docker --name node1

It’ll take a minute or two to download the image and launch the VM.

List VMs to make sure it launched properly.

$ multipass ls

Name State IPv4 Image
node1 Running 192.168.64.37 Ubuntu 22.04 LTS

172.17.0.1
172.18.0.1

You’ll use the 192 IP address when working with the examples later in the book.

Connect to the VM with the following command.

$ multipass shell node1

You’re now logged on to the VM and can run regular Docker commands.

Just type exit to log out of the VM. Use multipass delete node1 and then multipass
purge to delete it.
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Installing Docker on Linux

There are lots of ways to install Docker on Linux and most of them are easy. The
recommended way is to search the web or ask your AI how to do it. The instructions
in this section may be out of date and just for guidance purposes.

In this section we’ll look at one of the ways to install Docker on Ubuntu Linux 22.04
LTS. The procedure assumes you’ve already installed Linux and are logged on.

1. Remove existing Docker packages.

$ sudo apt-get remove docker docker-engine docker.io containerd runc

2. Update the apt package index.

$ sudo apt-get update
$ sudo apt-get install ca-certificates curl gnupg
...

3. Add the Docker GPG kye.

$ sudo install -m 0755 -d /etc/apt/keyrings
$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | \

sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg
$ sudo chmod a+r /etc/apt/keyrings/docker.gpg

4. Set-up the repository.

$ echo \
"deb [arch="$(dpkg --print-architecture)" signed-by=/etc/apt/keyrings/docker.gpg] \
https://download.docker.com/linux/ubuntu \
"$(. /etc/os-release && echo "$VERSION_CODENAME")" stable" | \
sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

5. Install Docker from the official repo.

$ sudo apt-get update
$ sudo apt-get install \

docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin

Docker is now installed and you can test by running some commands.
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$ sudo docker --version
Docker version 24.0.0, build 98fdcd7

$ sudo docker info
Server:
Containers: 1
Running: 1
Paused: 0
Stopped: 0

Images: 1
Server Version: 24.0.0
Storage Driver: overlay2
...

Play with Docker

Play with Docker (PWD) is a fully functional internet-based Docker playground that
lasts for 4 hours. You can add multiple nodes and even cluster them in a swarm.

Sometimes performance can be slow, but for a free service it’s excellent!

Visit https://labs.play-with-docker.com/

Chapter Summary

You can run Docker almost anywhere and most of the installation methods are simple.

Docker Desktop provides you a fully-functional Docker environment on your Linux,
Mac, or Windows machine. It’s easy to install, includes the Docker engine, has a slick UI,
and has a marketplace with lots of extensions to extend its capabilities. It’s a great choice
for a local Docker development environment and even lets you spin-up a single-node
Kubernetes cluster.

Packages exist to install the Docker engine on most Linux distros.

Play with Docker is a free 4-hour Docker playground on the internet.





4: The big picture
The aim of this chapter is to paint a quick big-picture of what Docker is all about before
we dive in deeper in later chapters.

We’ll break this chapter into two:

• The Ops perspective

• The Dev perspective

In the Ops Perspective section, we’ll download an image, start a new container, log in to
the new container, run a command inside of it, and then destroy it.

In the Dev Perspective section, we’ll focus more on the app. We’ll clone some app code
from GitHub, inspect a Dockerfile, containerize the app, run it as a container.

These two sections will give you a good idea of what Docker is all about and how the
major components fit together. It’s recommended that you read both sections to get
the dev and the ops perspectives. DevOps anyone?

Don’t worry if some of the stuff we do here is totally new to you. We’re not trying to
make you an expert in this chapter. This is about giving you a feel of things— setting
you up so that when we get into the details in later chapters, you have an idea of how
the pieces fit together.

If you want to follow along, all you need is a single Docker host with an internet
connection. I recommend Docker Desktop for your Mac or Windows PC. However,
the examples will work anywhere that you have Docker installed. We’ll be showing
examples using Linux containers and Windows containers.

If you can’t install software and don’t have access to a public cloud, another great way to
get Docker is Play With Docker (PWD). This is a web-based Docker playground that you
can use for free. Just point your web browser to https://labs.play-with-docker.com/ and
you’re ready to go (you’ll need a Docker Hub or GitHub account to be able to login).

As we progress through the chapter, we may use the terms “Docker host” and “Docker
node” interchangeably. Both refer to the system that you are running Docker on.

The Ops Perspective

When you install Docker, you get two major components:
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• The Docker client
• The Docker engine (sometimes called the “Docker daemon”)

The engine implements the runtime, API and everything else required to run containers.

In a default Linux installation, the client talks to the daemon via a local IPC/Unix
socket at /var/run/docker.sock. On Windows this happens via a named pipe at
npipe:////./pipe/docker_engine. Once installed, you can use the docker version
command to test that the client and daemon (server) are running and talking to each
other.

> docker version
Client: Docker Engine - Community
Version: 24.0.0
API version: 1.43
Go version: go1.20.4
Git commit: 98fdcd7
Built: Mon May 15 18:48:45 2023
OS/Arch: linux/arm64
Context: default

Server: Docker Engine - Community
Engine:
Version: 24.0.0
API version: 1.43 (minimum version 1.12)
Go version: go1.20.4
Git commit: 1331b8c
Built: Mon May 15 18:48:45 2023
OS/Arch: linux/arm64
Experimental: false
<Snip>

If you get a response back from the Client and Server, you’re good to go.

If you are using Linux and get an error response from the Server component, make sure
that Docker is up and running. Also, try the command again with sudo in front of it –
sudo docker version. If it works with sudo you will need to add your user account to
the local docker group, or prefix all docker commands with sudo.

Images

It’s useful to think of a Docker image as an object that contains an OS filesystem, an
application, and all application dependencies. If you work in operations, it’s like a virtual
machine template. A virtual machine template is essentially a stopped virtual machine.
In the Docker world, an image is effectively a stopped container. If you’re a developer,
you can think of an image as a class.

Run the docker images command on your Docker host.
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$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE

If you are working from a freshly installed Docker host, or Play With Docker, you’ll have
no images and it will look like the previous output.

Getting images onto your Docker host is called pulling. Pull the ubuntu:latest image.

$ docker pull ubuntu:latest
latest: Pulling from library/ubuntu
dfd64a3b4296: Download complete
6f8fe7bff0be: Download complete
3f5ef9003cef: Download complete
79d0ea7dc1a8: Download complete
docker.io/library/ubuntu:latest

Run the docker images command again to see the image you just pulled.

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
ubuntu latest dfd64a3b4296 1 minute ago 106MB

We’ll get into the details of where the image is stored and what’s inside of it in later
chapters. For now, it’s enough to know that an image contains enough of an operating
system (OS), as well as all the code and dependencies to run whatever application it’s
designed for. The ubuntu image that we’ve pulled has a stripped-down version of the
Ubuntu Linux filesystem and a few of the common Ubuntu utilities.

If you pull an application container, such as nginx:latest, you’ll get an image with a
minimal OS as well as the code to run the app (NGINX).

It’s also worth noting that each image gets its own unique ID. When referencing images,
you can refer to them using either IDs or names. If you’re working with image ID’s, it’s
usually enough to type the first few characters of the ID — as long as it’s unique, Docker
will know which image you mean.

Containers

Now that we have an image pulled locally we can use the docker run command to
launch a container from it.

$ docker run -it ubuntu:latest /bin/bash
root@6dc20d508db0:/#
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Look closely at the output from the previous command. You’ll see that the shell prompt
has changed. This is because the -it flags switch your shell into the terminal of the
container — your shell is now inside of the new container!

Let’s examine that docker run command.

docker run tells Docker to start a new container. The -it flags tell Docker to make the
container interactive and to attach the current shell to the container’s terminal (we’ll get
more specific about this in the chapter on containers). Next, the command tells Docker
that we want the container to be based on the ubuntu:latest image. Finally, it tells
Docker which process we want to run inside of the container – a Bash shell.

Run a ps command from inside of the container to list all running processes.

root@6dc20d508db0:/# ps -elf
F S UID PID PPID NI ADDR SZ WCHAN STIME TTY TIME CMD
4 S root 1 0 0 - 4560 - 13:38 pts/0 00:00:00 /bin/bash
0 R root 9 1 0 - 8606 - 13:38 pts/0 00:00:00 ps -elf

There are only two processes:

• PID 1. This is the /bin/bash process that we told the container to run with the
docker run command.

• PID 9. This is the ps -elf command/process that we ran to list the running
processes.

The presence of the ps -elf process in the Linux output can be a bit misleading as it is a
short-lived process that dies as soon as the ps command completes. This means the only
long-running process inside of the container is the /bin/bash process.

Press Ctrl-PQ to exit the container without terminating it. This will land your shell back
at the terminal of your Docker host. You can verify this by looking at your shell prompt.

Now that you are back at the shell prompt of your Docker host, run the ps command
again.

Notice how many more processes are running on your Docker host compared to the
container you just ran.

Pressing Ctrl-PQ from inside a container will exit you from the container without
killing it. You can see all running containers on your system using the docker ps
command.
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$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES
6dc20d508db0 ubuntu:latest "/bin/bash" 7 mins Up 7 min vigilant_borg

The output shows a single running container. This is the one you created earlier and
proves it’s still running. You can also see it was created 7 minutes ago and has been
running for 7 minutes.

Attaching to running containers

You can attach your shell to the terminal of a running container with the docker exec
command. As the container from the previous steps is still running, let’s make a new
connection to it.

This example references a container called “vigilant_borg”. The name of your container
will be different, so remember to substitute “vigilant_borg” with the name or ID of the
container running on your Docker host.

$ docker exec -it vigilant_borg bash
root@6dc20d508db0:/#

Notice that your shell prompt has changed again. You are logged into the container
again.

The format of the docker exec command is: docker exec <options> <container-
name or container-id> <command/app>. We used the -it flags to attach our shell to
the container’s shell. We referenced the container by name and told it to run the bash
shell. We could easily have referenced the container by its hex ID.

Exit the container again by pressing Ctrl-PQ.

Your shell prompt should be back to your Docker host.

Run the docker ps command again to verify that your container is still running.

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES
6dc20d508db0 ubuntu:latest "/bin/bash" 9 mins Up 9 min vigilant_borg

Stop the container and kill it using the docker stop and docker rm commands.
Remember to substitute the names/IDs of your own containers.
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$ docker stop vigilant_borg
vigilant_borg

It may take a few seconds for the container to gracefully stop.

$ docker rm vigilant_borg
vigilant_borg

Verify that the container was successfully deleted by running the docker ps command
with the -a flag. Adding -a tells Docker to list all containers, even those in the stopped
state.

$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Congratulations, you’ve just pulled a Docker image, started a container from it, attached
to it, executed a command inside it, stopped it, and deleted it.

The Dev Perspective

Containers are all about the apps.

In this section, we’ll clone an app from a Git repo, inspect its Dockerfile, containerize it,
and run it as a container.

The Linux app can be cloned from: https://github.com/nigelpoulton/psweb.git

Run all of the following commands from a terminal on your Docker host.

Clone the repo locally. This will pull the application code to your local Docker host
ready for you to containerize it.

$ git clone https://github.com/nigelpoulton/psweb.git
Cloning into 'psweb'...
remote: Enumerating objects: 63, done.
remote: Counting objects: 100% (34/34), done.
remote: Compressing objects: 100% (22/22), done.
remote: Total 63 (delta 13), reused 25 (delta 9), pack-reused 29
Receiving objects: 100% (63/63), 13.29 KiB | 4.43 MiB/s, done.
Resolving deltas: 100% (21/21), done.

Change directory into the cloned repo’s directory and list its contents.
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$ cd psweb
$ ls -l
total 40
-rw-r--r--@ 1 ubuntu ubuntu 338 24 Apr 19:29 Dockerfile
-rw-r--r--@ 1 ubuntu ubuntu 396 24 Apr 19:32 README.md
-rw-r--r--@ 1 ubuntu ubuntu 341 24 Apr 19:29 app.js
-rw-r--r-- 1 ubuntu ubuntu 216 24 Apr 19:29 circle.yml
-rw-r--r--@ 1 ubuntu ubuntu 377 24 Apr 19:36 package.json
drwxr-xr-x 4 ubuntu ubuntu 128 24 Apr 19:29 test
drwxr-xr-x 3 ubuntu ubuntu 96 24 Apr 19:29 views

The app is a simple nodejs web app running some static HTML.

The Dockerfile is a plain-text document that tells Docker how to build the app and
dependencies into a Docker image.

List the contents of the Dockerfile.

$ cat Dockerfile

FROM alpine
LABEL maintainer="nigelpoulton@hotmail.com"
RUN apk add --update nodejs nodejs-npm
COPY . /src
WORKDIR /src
RUN npm install
EXPOSE 8080
ENTRYPOINT ["node", "./app.js"]

For now, it’s enough to know that each line represents an instruction that Docker uses
to build the app into an image.

At this point we’ve pulled some application code from a remote Git repo and we’ve
looked at the application’s Dockerfile that contains the instructions Docker uses to build
it as an image.

Use the docker build command to create a new image using the instructions in the
Dockerfile. This example creates a new Docker image called test:latest.

Be sure to run the command from within the directory containing the app code and
Dockerfile.
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$ docker build -t test:latest .
[+] Building 36.2s (11/11) FINISHED
=> [internal] load .dockerignore 0.0s
=> => transferring context: 2B 0.0s
=> [internal] load build definition from Dockerfile 0.0s
<Snip>
=> => naming to docker.io/library/test:latest 0.0s
=> => unpacking to docker.io/library/test:latest 0.7s

Once the build is complete, check to make sure that the new test:latest image exists
on your host.

$ docker images
REPO TAG IMAGE ID CREATED SIZE
test latest 1ede254e072b 7 seconds ago 154MB

You have a newly-built Docker image with the app and dependencies inside.

Run a container from the image and test the app.

$ docker run -d \
--name web1 \
--publish 8080:8080 \
test:latest

Open a web browser and navigate to the DNS name or IP address of the Docker host
that you are running the container from, and point it to port 8080. You will see the
following web page.

If you’re following along on Docker Desktop, you’ll be able to connect to local-
host:8080 or 127.0.0.1:8080. If you’re following along on Play With Docker, you will
be able to click the 8080 hyperlink above the terminal screen.

Figure 4.1
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Well done. You’ve copied some application code from a remote Git repo, built it into a
Docker image, and ran it as a container. We call this “containerizing an app”.

Chapter Summary

In the Ops section of the chapter, you downloaded a Docker image, launched a container
from it, logged into the container, executed a command inside of it, and then stopped
and deleted the container.

In the Dev section you containerized a simple application by pulling some source code
from GitHub and building it into an image using instructions in a Dockerfile. You then
ran the containerized app.

This big picture view should help you with the up-coming chapters where we’ll dig
deeper into images and containers.





Part 2: The technical stuff





5: The Docker Engine
In this chapter, we’ll take a look under the hood of the Docker Engine.

You can use Docker without understanding any of the things we’ll cover in this chapter,
so feel free to skip it. However, to be a real master of anything, you need to understand
what’s going on under the hood. So, to be a real Docker master, you need to know the
stuff in this chapter.

This will be a theory-based chapter with no hands-on exercises.

As this chapter is part of the technical section of the book, we’re going to employ the
three-tiered approach where we split the chapter into three sections:

• The TLDR: Two or three quick paragraphs that you can read while standing in
line for a coffee

• The deep dive: The really long bit where we get into the detail

• The commands: A quick recap of the commands we learned

Let’s go and learn about the Docker Engine!

Docker Engine - The TLDR

The Docker engine is the core software that runs and manages containers. We often refer
to it simply as Docker. If you know a thing or two about VMware, it might be useful to
think of the Docker engine as being like ESXi.

The Docker engine is modular in design and built from lots of small specialised compo-
nents. Most of these are pulled from the Moby project (https://mobyproject.org/) and
implement open standards such as those maintained by the Open Container Initiative
(OCI).

In many ways, the Docker Engine is like a car engine — both are modular and created by
connecting many small specialized parts:

• A car engine is made from many specialized parts that work together to make a car
drive — intake manifolds, throttle body, cylinders, pistons, spark plugs, exhaust
manifolds etc.
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• The Docker Engine is made from many specialized tools that work together to
create and run containers — The API, image builder, high-level runtime, low-level
runtime, shims etc.

At the time of writing, the major components that make up the Docker engine are
the Docker daemon, the build system, containerd, runc, and various plugins such as
networking and volumes. Together, these create and run containers.

Figure 5.1 shows a high-level view.

Figure 5.1

Throughout the book we’ll refer to runc and containerd with lower-case “r” and “c”.
This means sentences starting with either runc or containerd will not start with a
capital letter. This is intentional and not a mistake.

Docker Engine - The Deep Dive

When Docker was first released, the Docker engine had two major components:

• The Docker daemon (sometimes referred to as just “the daemon”)

• LXC

The Docker daemon was a monolithic binary – it contained all the code for API, the
runtime, image builds, and more.

LXC provided the daemon with access to the fundamental building-blocks of containers
that existed in the Linux kernel. Things like namespaces and control groups (cgroups).

Figure 5.2. shows how the daemon, LXC, and the OS, interacted in older versions of
Docker.
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Figure 5.2 Old Docker architecture

Getting rid of LXC

The reliance on LXC was an issue from the start.

First up, LXC is Linux-specific. This was a problem for a project that had aspirations of
being multi-platform.

Second up, being reliant on an external tool for something so core to the project was a
huge risk.

As a result, Docker. Inc. developed their own tool called libcontainer as a replacement for
LXC. The goal of libcontainer was to be a platform-agnostic tool that provided Docker
with access to the fundamental container building-blocks that exist in the host kernel.

Libcontainer replaced LXC as the default execution driver a very long time ago in Docker
0.9.

Getting rid of the monolithic Docker daemon

Over time, the monolithic nature of the Docker daemon became more and more
problematic:

1. It’s hard to innovate on

2. It got slower

3. It wasn’t what the ecosystem wanted

Docker, Inc. was aware of these challenges and began a huge effort to break apart
the monolithic daemon and modularize it. The aim of this work was to break out as
much of the functionality as possible from the daemon and re-implement it in smaller
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specialized tools. These specialized tools can be swapped out, as well as easily re-used
by third parties to build other tools. This plan followed the tried-and-tested Unix
philosophy of building small specialized tools that can be pieced together into larger
tools.

This work of breaking apart and re-factoring the Docker engine has seen all of the
container execution and container runtime code entirely removed from the daemon
and refactored into small, specialized tools.

Figure 5.3 shows a high-level view of the current Docker engine architecture with brief
descriptions.

Figure 5.3

The influence of the Open Container Initiative (OCI)

While Docker, Inc. was breaking the daemon apart and refactoring code, the OCI7 was
in the process of defining container-related standards:

1. Image spec8

7https://www.opencontainers.org/
8https://github.com/opencontainers/image-spec

https://www.opencontainers.org/
https://github.com/opencontainers/image-spec
https://www.opencontainers.org/
https://github.com/opencontainers/image-spec


43

2. Container runtime spec9

Both specifications were released as version 1.0 in July 2017 and we shouldn’t see too
much change, as stability is the name of the game here. At the time of writing a third
spec has been added to standardise image distribution via registries.

Docker, Inc. was heavily involved in creating these specifications and contributed a lot
of code.

All Docker versions since 2016 implement the OCI specifications. For example, the
Docker daemon no longer contains any container runtime code — all container runtime
code is implemented in a separate OCI-compliant layer. By default, Docker uses runc for
this. runc is the reference implementation of the OCI container-runtime-spec. This is the
runc container runtime layer in Figure 5.3.

As well as this, the containerd component of the Docker Engine makes sure Docker
images are presented to runc as valid OCI bundles.

runc

As previously mentioned, runc is the OCI container-runtime-spec reference implemen-
tation. Docker, Inc. was heavily involved in defining the spec and developing runc.

If you strip everything else away, runc is a small, lightweight CLI wrapper for libcon-
tainer – remember that libcontainer originally replaced LXC as the interface layer with
the host OS in the early Docker architecture.

runc has a single purpose in life — create containers. And it’s fast. But as it’s a CLI
wrapper, it’s effectively a standalone container runtime tool. This means you can
download and build the binary, and you’ll have everything you need to build and play
with runc (OCI) containers. But it’s bare bones and very low-level, meaning you’ll have
none of the richness that you get with the full Docker engine.

We sometimes say that runc operates at “the OCI layer”. See Figure 5.3.

You can see runc release information at:

• https://github.com/opencontainers/runc/releases

containerd

As part of the effort to strip functionality out of the Docker daemon, all of the container
execution logic was ripped out and refactored into a new tool called containerd

9https://github.com/opencontainers/runtime-spec

https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
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(pronounced container-dee). Its sole purpose in life is to manage container lifecycle
operations such as start | stop | pause | rm....

containerd is available as a daemon for Linux and Windows, and Docker has been using
it on Linux since the 1.11 release. In the Docker engine stack, containerd sits between
the daemon and runc at the OCI layer.

As previously stated, containerd was originally intended to be small, lightweight, and
designed for a single task in life — container lifecycle operations. However, over time it
has branched out and taken on more functionality. Things like image pulls, volumes and
networks.

One of the reasons for adding more functionality is to make it easier to use in other
projects. For example, in Kubernetes it’s beneficial for containerd to do things like push
and pull images. However, all the extra functionality is modular and optional, meaning
you can pick and choose which bits you want. So, it’s possible to include containerd in
projects such as Kubernetes, but only to take the pieces your project needs.

containerd was originally developed by Docker, Inc. and donated to the Cloud Native
Computing Foundation (CNCF). At the time of writing, containerd is a fully graduated
CNCF project, meaning it’s stable and considered ready for production. You can see the
latest releases here:

• https://github.com/containerd/containerd/releases

Starting a new container (example)

Now that we have a view of the big picture and some of the history, let’s walk through
the process of creating a new container.

The most common way of starting containers is using the Docker CLI. The following
docker run command will start a simple new container based on the alpine:latest
image.

$ docker run --name ctr1 -it alpine:latest sh

When you type commands like this into the Docker CLI, the Docker client converts
them into the appropriate API payload and POSTs them to the API endpoint exposed
by the Docker daemon.

The API is implemented in the daemon and can be exposed over a local socket or
the network. On Linux the socket is /var/run/docker.sock and on Windows it’s
\pipe\docker_engine.

Once the daemon receives the command to create a new container, it makes a call
to containerd. Remember that the daemon no-longer contains any code to create
containers!
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The daemon communicates with containerd via a CRUD-style API over gRPC10.

Despite its name, containerd cannot actually create containers. It uses runc to do that. It
converts the required Docker image into an OCI bundle and tells runc to use this to
create a new container.

runc interfaces with the OS kernel to pull together all of the constructs necessary to
create a container (namespaces, cgroups etc.). The container process is started as a child-
process of runc, and as soon as it starts, runc will exit.

Voila! The container is now started.

The process is summarized in Figure 5.4.

Figure 5.4

One huge benefit of this model

Having all of the logic and code to start and manage containers removed from the
daemon means that the entire container runtime is decoupled from the Docker daemon.
We sometimes call this “daemonless containers” and it makes it possible to perform

10https://grpc.io/

https://grpc.io/
https://grpc.io/
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maintenance and upgrades on the Docker daemon without impacting running contain-
ers.

In the old model, where all of container runtime logic was implemented in the daemon,
starting and stopping the daemon would kill all running containers on the host. This
was a huge problem in production environments.

Fortunately, this is no longer a problem.

What’s this shim all about?

Some of the diagrams in the chapter have shown a shim component.

The shim is integral to the implementation of daemonless containers — what we just
mentioned about decoupling running containers from the daemon for things like
daemon upgrades.

We mentioned earlier that containerd uses runc to create new containers. In fact, it forks
a new instance of runc for every container it creates. However, once each container is
created, the runc process exits. This means we can run hundreds of containers without
having to run hundreds of runc instances.

Once a container’s parent runc process exits, the associated containerd-shim process
becomes the container’s parent. Some of the responsibilities the shim performs as a
container’s parent include:

• Keeping any STDIN and STDOUT streams open so that when the daemon is
restarted, the container doesn’t terminate due to pipes being closed etc.

• Reports the container’s exit status back to the daemon.

How it’s implemented on Linux

On a Linux system, the components we’ve discussed are implemented as separate
binaries as follows:

• /usr/bin/dockerd (the Docker daemon)

• /usr/bin/containerd

• /usr/bin/containerd-shim-runc-v2

• /usr/bin/runc

You can see all of these on a Linux system by running a ps command on the Docker host.
Obviously, some of them will only be present when the system has running containers.
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What’s the point of the daemon

With all of the execution and runtime code stripped out of the daemon you might be
asking the question: “what is left in the daemon?”.

Obviously, the answer to this question will change over time as more and more function-
ality is stripped out and modularized. However, the daemon is capable of pushing and
pulling images, implementing the Docker API, authentication, security, and more.

At the time of writing, image management is in the process of being removed from the
daemon and handled by containerd.

Chapter summary

The Docker engine is software that makes it easy to build, ship, and run containers.
It implements the OCI standards and is a modular app comprising lots of small,
specialised components.

The Docker daemon component implements the Docker API and can do things such as
image management, networks, and volumes. However, image management is currently
being removed from the daemon and implemented in containerd.

The containerd component oversees container execution and image management tasks.
It was originally written by Docker, Inc. but then contributed to the CNCF. It’s usually
classified as a high-level runtime that acts as a container supervisor managing lifecycle
operations. It is small and lightweight and is used by many other projects including
Kubernetes.

containerd relies on a low-level runtime called runc to interface with the host kernel
and build containers. runc is the reference implementation of the OCI runtime-spec and
expects to start containers from OCI-compliant bundles. containerd talks to runc and
ensures Docker images are presented to runc as OCI-compliant bundles.

runc can be used as a standalone CLI tool to create containers. It’s based on code from
libcontainer and is used almost everywhere that containerd is used.





6: Images
In this chapter we’ll dive deep into Docker images. The aim is to give you a solid
understanding of what Docker images are, how to perform basic operations, and how
they work under-the-hood.

We’ll see how to build new images for our own applications in a later chapter.

We’ll split this chapter into the usual three parts:

• The TLDR

• The deep dive

• The commands

Docker images - The TLDR

Image, Docker image, container image, and OCI image all mean the same thing. We’ll use the
terms interchangeably.

A container image is read-only package that contains everything you need to run an
application. It includes application code, application dependencies, a minimal set of OS
constructs, and metadata. A single image can be used to start one or more containers.

If you’re familiar with VMware, you can think of images as similar to VM templates.
A VM template is like a stopped VM— a container image is like a stopped container.
If you’re a developer you can think of them as similar to classes. You can create one or
more objects from a class — you can create one or more containers from an image.

You get container images by pulling them from a registry. The most common registry is
Docker Hub11 but others exist. The pull operation downloads an image to your local
Docker host where Docker can use it to start one or more containers.

Images are made up of multiple layers that are stacked on top of each other and repre-
sented as a single object. Inside of the image is a cut-down operating system (OS) and
all of the files and dependencies required to run an application. Because containers are
intended to be fast and lightweight, images tend to be small (Windows images tend to be
huge).

That’s the elevator pitch. Let’s dig a little deeper.

11https://hub.docker.com

https://hub.docker.com/
https://hub.docker.com/
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Docker images - The deep dive

We’ve mentioned a couple of times already that images are like stopped containers. In
fact, you can stop a container and create a new image from it. With this in mind, images
are considered build-time constructs, whereas containers are run-time constructs.

Figure 6.1

Images and containers

Figure 6.1 shows high-level view of the relationship between images and containers.
We use the docker run and docker service create commands to start one or more
containers from a single image. Once you’ve started a container from an image, the two
constructs become dependent on each other, and you cannot delete the image until the
last container using it has been stopped and destroyed.

Images are usually small

The whole purpose of a container is to run a single application or service. This means it
only needs the code and dependencies of the app it’s running — it doesn’t need anything
else. This means images are also small and stripped of all non-essential parts.

For example, at the time of writing the official Alpine Linux image is 7MB. This is
because it doesn’t ship with 6 different shells, three different package managers and
more… In fact, a lot of images ship without a shell or a package manager – if the
application doesn’t need it, it doesn’t get included in the image.

Images don’t include a kernel. This is because containers share the kernel of the host
they’re running on. It’s normal for the only OS components included in an image to be
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a few important filesystem components and other basic constructs. This is why you’ll
sometimes hear people say “images contain just enough OS”.

Windows-based images tend to be a lot bigger than Linux-based images because of the
way the Windows OS works. It’s not uncommon for Windows images to be several
gigabytes and take a long time to push and pull.

Pulling images

A cleanly installed Docker host has no images in its local repository.

The local image repository on a Linux host is usually in /var/lib/docker/<storage-
driver>. If you’re using Docker on your Mac or PC with Docker Desktop, everything
runs inside of a VM.

You can use the following command to check if your Docker host has any images in its
local repository.

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE

The process of getting images onto a Docker host is called pulling. So, if you want the
latest Busybox image on your Docker host, you’d have to pull it. Use the following
commands to pull some images and then check their sizes.

If you are following along on Linux and haven’t added your user account to
the local dockerUnix group, you may need to add sudo to the beginning of
all the following commands.

Linux example:

$ docker pull redis:latest
latest: Pulling from library/redis
b5d25b35c1db: Pull complete
6970efae6230: Pull complete
fea4afd29d1f: Pull complete
7977d153b5b9: Pull complete
7945d827bd72: Pull complete
b6aa3d1ce554: Pull complete
Digest: sha256:ea30bef6a1424d032295b90db20a869fc8db76331091543b7a80175cede7d887
Status: Downloaded newer image for redis:latest
docker.io/library/redis:latest

$ docker pull alpine:latest
latest: Pulling from library/alpine
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08409d417260: Pull complete
Digest: sha256:02bb6f428431fbc2809c5d1b41eab5a68350194fb508869a33cb1af4444c9b11
Status: Downloaded newer image for alpine:latest
docker.io/library/alpine:latest

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
alpine latest 44dd6f223004 9 days ago 7.73MB
redis latest 2334573cc576 2 weeks ago 111MB

Windows example:

> docker pull mcr.microsoft.com/powershell:latest
latest: Pulling from powershell
5b663e3b9104: Pull complete
9018627900ee: Pull complete
133ab280ee0f: Pull complete
084853899645: Pull complete
399a2a3857ed: Pull complete
6c1c6d29a559: Pull complete
d1495ba41b1c: Pull complete
190bd9d6eb96: Pull complete
7c239384fec8: Pull complete
21aee845547a: Pull complete
f951bda9026b: Pull complete
Digest: sha256:fbc9555...123f3bd7
Status: Downloaded newer image for mcr.microsoft.com/powershell:latest
mcr.microsoft.com/powershell:latest

> docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
mcr.microsoft.com/powershell latest 73175ce91dff 2 days ago 495MB
mcr.microsoft.com/.../iis latest 6e5c6561c432 3 days ago 5.05GB

As you can see, the images are now present in the Docker host’s local repository. You can
also see that the Windows images are a lot larger and comprise many more layers.

Image naming

When pulling an image, you have to specify the name of the image you’re pulling. Let’s
take a minute to look at image naming. To do that we need a bit of background on how
images are stored.

Image registries

We store images in centralised places called registries. Most modern registries implement
the OCI distribution-spec and we sometimes call them OCI registries. The job of a
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registry is to securely store container images and make them easy to access from
different environments. Some registries offer advanced services such as image scanning
and integration with build pipelines.

The most common registry is Docker Hub, but others exist including 3rd-party
registries and secure on-premises registries. However, the Docker client is opinionated
and defaults to using Docker Hub. We’ll be using Docker Hub for the rest of the book.

The output of the following command is snipped, but you can see that Docker is config-
ured to use https://index.docker.io/v1/ as its default registry. This automatically
redirects to https://index.docker.io/v2/.

$ docker info
<Snip>
Default Runtime: runc
containerd version: 2806fc1057397dbaeefbea0e4e17bddfbd388f38
runc version: v1.1.5-0-gf19387a
Registry: https://index.docker.io/v1/
<Snip>

Image registries contain one or more image repositories. In turn, image repositories
contain one or more images. That might be a bit confusing, so Figure 6.2 shows a
picture of an image registry with 3 repositories, and each repository has one or more
images.

Figure 6.2

Official repositories

Docker Hub has the concept of official repositories.
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As the name suggests, official repositories are the home to images that have been vetted
and curated by the application vendor and Docker, Inc. This means they should contain
up-to-date, high-quality code, that is secure, well-documented, and in-line with best
practices.

If a repository isn’t an official repository it can be like the wild-west — you should not
assume they are safe, well-documented or built according to best practices. That’s
not saying the images they contain are bad. There’s some excellent stuff in unofficial
repositories. You just need to be very careful before trusting code from them. To be
honest, you should never trust software from the internet — even images from official
repositories.

Most of the popular applications and operating systems have official repositories on
Docker Hub. They’re easy to spot because they live at the top level of the Docker Hub
namespace and have a green “Docker official image” badge. The following list shows
a few official repositories and their URLs that exist at the top-level of the Docker Hub
namespace:

• nginx: https://hub.docker.com/_/nginx/

• busybox: https://hub.docker.com/_/busybox/

• redis: https://hub.docker.com/_/redis/

• mongo: https://hub.docker.com/_/mongo/

On the other hand, my own personal images live in the wild west of unofficial repositories
and should not be trusted. Here are some examples of images in my repositories:

• nigelpoulton/tu-demo — https://hub.docker.com/r/nigelpoulton/tu-demo/

• nigelpoulton/pluralsight-docker-ci — https://hub.docker.com/r/nigelpoulton/pluralsight-
docker-ci/

Not only are images in my repositories not vetted, not kept up-to-date, not secure,
and not well documented… they also don’t live at the top-level of the Docker Hub
namespace. My repositories all live within the nigelpoulton second-level namespace.

After all of that, we can finally look at how we address images on the Docker command
line.

Image naming and tagging

Addressing images from official repositories is as simple as providing the repository
name and tag separated by a colon (:). The format for docker pull, when working with
an image from an official repository is:
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$ docker pull <repository>:<tag>

In the Linux examples from earlier, we pulled an Alpine and a Redis image with the
following two commands:

$ docker pull alpine:latest
$ docker pull redis:latest`

These pulled the images tagged as “latest” from the top-level “alpine” and “redis”
repositories.

The following examples show how to pull various different images from official reposito-
ries:

$ docker pull mongo:4.2.24
//This will pull the image tagged as `4.2.24` from the official `mongo` repository.

$ docker pull busybox:glibc
//This will pull the image tagged as `glibc` from the official `busybox` repository.

$ docker pull alpine
//This will pull the image tagged as `latest` from the official `alpine` repository.

A couple of points about those commands.

First, if you do not specify an image tag after the repository name, Docker will assume
you are referring to the image tagged as latest. If the repository doesn’t have an image
tagged as latest the command will fail.

Second, the latest tag doesn’t have any magical powers. Just because an image is tagged
as latest does not guarantee it is the most recent image in the repository!

Pulling images from an unofficial repository is essentially the same — you just need to
prepend the repository name with a Docker Hub username or organization name. The
following example shows how to pull the v2 image from the tu-demo repository owned
by a not-to-be-trusted person whose Docker Hub account name is nigelpoulton.

$ docker pull nigelpoulton/tu-demo:v2
//This will pull the image tagged as `v2`
//from the `tu-demo` repository within the `nigelpoulton` namespace

If you want to pull images from 3rd party registries (not Docker Hub) you just prepend
the repository name with the DNS name of the registry. For example, the following
command pulls the 3.1.5 image from the google-containers/git-sync repo on the
Google Container Registry (gcr.io).
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$ docker pull gcr.io/google-containers/git-sync:v3.1.5
v3.1.5: Pulling from google-containers/git-sync
597de8ba0c30: Pull complete
b263d8e943d1: Pull complete
a20ed723abc0: Pull complete
49535c7e3a51: Pull complete
4a20d0825f07: Pull complete
Digest: sha256:f38673f25b8...b5f8f63c4da7cc6
Status: Downloaded newer image for gcr.io/google-containers/git-sync:v3.1.5
gcr.io/google-containers/git-sync:v3.1.5

Notice how the pull experience is exactly the same from Docker Hub and other
registries.

Images with multiple tags

One final word about image tags… A single image can have as many tags as you want.
This is because tags are arbitrary alpha-numeric values that are stored as metadata
alongside the image.

At first glance, the following output appears to show three images. However, on closer
inspection it’s actually two images – the image with the c610c6a38555 ID is tagged as
latest as well as v1.

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
nigelpoulton/tu-demo latest c610c6a38555 22 months ago 58.1MB
nigelpoulton/tu-demo v1 c610c6a38555 22 months ago 58.1MB
nigelpoulton/tu-demo v2 6ba12825d092 16 months ago 58.6MB

This is a perfect example of the warning issued earlier about the latest tag. In this
example, the latest tag refers to the same image as the v1 tag. This means it’s pointing
to the older of the two images! Moral of the story, latest is an arbitrary tag and is not
guaranteed to point to the newest image in a repository!

Filtering the output of docker images

Docker provides the --filter flag to filter the list of images returned by docker
images.

The following example will only return dangling images.
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$ docker images --filter dangling=true
REPOSITORY TAG IMAGE ID CREATED SIZE
<none> <none> 4fd34165afe0 7 days ago 14.5MB

A dangling image is one that is no longer tagged and appears in listings as <none>:<none>. 
A common way they occur is when building a new image with a tag that already exists. 
When this happens, Docker will build the new image, notice that an existing image
already has the same tag, remove the tag from the existing image and give it to the new 
image.

Consider this example, you build a new application image based on alpine:3.4 and
tag it as dodge:challenger. Then you update the image to use alpine:3.5 instead of 
alpine:3.4. When you build the new image, the operation will create a new image
tagged as dodge:challenger and remove the tags from the old image. The old image
will become a dangling image.

You can delete all dangling images on a system with the docker image prune command.
If you add the -a flag, Docker will also remove all unused images (those not in use by
any containers).

Docker currently supports the following filters:

• dangling: Accepts true or false, and returns only dangling images (true), or non-
dangling images (false).

• before: Requires an image name or ID as argument, and returns all images
created before it.

• since: Same as above, but returns images created after the specified image.

• label: Filters images based on the presence of a label or label and value. The
docker images command does not display labels in its output.

For all other filtering you can use reference.

Here’s an example using reference to display only images tagged as “latest”. At the time
of writing this works on some Docker installations and not others (possibly not working
on systems that use containerd for image management).

$ docker images --filter=reference="*:latest"
REPOSITORY TAG IMAGE ID CREATED SIZE
busybox latest 3596868f4ba8 7 days ago 3.72MB
alpine latest 44dd6f223004 9 days ago 7.73MB
redis latest 2334573cc576 2 weeks ago 111MB

You can also use the --format flag to format output using Go templates. For example,
the following command will only return the size property of images on a Docker host.
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$ docker images --format "{{.Size}}"
3.72MB
7.73MB
111MB
265MB
58.1MB

Use the following command to return all images, but only display repo, tag and size.

$ docker images --format "{{.Repository}}: {{.Tag}}: {{.Size}}"
busybox: latest: 3.72MB
alpine: latest: 7.73MB
redis: latest: 111MB
portainer/portainer-ce: latest: 265MB
nigelpoulton/tu-demo: latest: 58.1MB
<Snip>

If you need more powerful filtering, you can always use the tools provided by your OS
and shell such as grep and awk. You may also find a Docker Desktop extension that’s
useful.

Searching Docker Hub from the CLI

The docker search command lets you search Docker Hub from the CLI. It has limited
value as you can only pattern-match against strings in the “NAME” field. However, you
can filter output based on any of the returned columns.

In its simplest form, it searches for all repos containing a certain string in the “NAME”
field. For example, the following command searches for all repos with “nigelpoulton” in
the “NAME” field.

$ docker search nigelpoulton
NAME DESCRIPTION STARS AUTOMATED
nigelpoulton/pluralsight.. Web app used in... 22 [OK]
nigelpoulton/tu-demo 12
nigelpoulton/k8sbook Kubernetes Book web app 2
nigelpoulton/workshop101 Kubernetes 101 Workshop 0
<Snip>

The “NAME” field is the repository name. This includes the Docker ID, or organization
name, for unofficial repositories. For example, the following command lists all reposito-
ries that include the string “alpine” in the name.
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$ docker search alpine
NAME DESCRIPTION STARS OFFICIAL AUTOMATED
alpine A minimal Docker.. 9962 [OK]
rancher/alpine-git 1
grafana/alpine Alpine Linux with.. 4
<Snip>

Notice how some of the repositories returned are official and some are unofficial. You
can use --filter "is-official=true" so that only official repos are displayed.

$ docker search alpine --filter "is-official=true"
NAME DESCRIPTION STARS OFFICIAL AUTOMATED
alpine A minimal Docker.. 9962 [OK]

One last thing about docker search. By default, Docker will only display 25 lines of
results. However, you can use the --limit flag to increase that to a maximum of 100.

Images and layers

A Docker image is a collection of loosely-connected read-only layers where each layer
comprises one or more files. Figure 6.3 shows an image with 5 layers.

Figure 6.3

Docker takes care of stacking the layers and representing them as a single unified object.

There are a few ways to see and inspect the layers that make up an image. In fact, we saw
one earlier when pulling images. The following example looks closer at an image pull
operation.
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$ docker pull ubuntu:latest
latest: Pulling from library/ubuntu
952132ac251a: Pull complete
82659f8f1b76: Pull complete
c19118ca682d: Pull complete
8296858250fe: Pull complete
24e0251a0e2c: Pull complete
Digest: sha256:f4691c96e6bbaa99d...28ae95a60369c506dd6e6f6ab
Status: Downloaded newer image for ubuntu:latest
docker.io/ubuntu:latest

Each line in the output above that ends with “Pull complete” represents a layer in the
image the was pulled. As we can see, this image has 5 layers and is shown in Figure 6.4
with layer IDs.

Figure 6.4

Another way to see the layers of an image is to inspect the image with the docker
inspect command. The following example inspects the same ubuntu:latest image.

$ docker inspect ubuntu:latest
[

{
"Id": "sha256:bd3d4369ae.......fa2645f5699037d7d8c6b415a10",
"RepoTags": [

"ubuntu:latest"

<Snip>

"RootFS": {
"Type": "layers",
"Layers": [

"sha256:c8a75145fc...894129005e461a43875a094b93412",
"sha256:c6f2b330b6...7214ed6aac305dd03f70b95cdc610",
"sha256:055757a193...3a9565d78962c7f368d5ac5984998",
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"sha256:4837348061...12695f548406ea77feb5074e195e3",
"sha256:0cad5e07ba...4bae4cfc66b376265e16c32a0aae9"

]
}

}
]

The trimmed output shows 5 layers again. Only this time they’re shown using their
SHA256 hashes.

The docker inspect command is a great way to see the details of an image.

The docker history command is another way of inspecting an image and seeing layer
data. However, it shows the build history of an image and is not a strict list of layers in
the final image. For example, some Dockerfile instructions (“ENV”, “EXPOSE”, “CMD”,
and “ENTRYPOINT”) add metadata to the image and do not create a layer.

All Docker images start with a base layer, and as changes are made and new content is
added, new layers are added on top.

Consider the following oversimplified example of building a simple Python application.
You might have a corporate policy that all applications are based on the official Ubuntu
22:04 image. This would be your image’s base layer. Adding the Python package will add
a second layer on top of the base layer. If you later add source code files, these will be
added as additional layers. The final image will have three layers as shown in Figure 6.5
(remember this is an over-simplified example for demonstration purposes).

Figure 6.5

It’s important to understand that as additional layers are added, the image is always the
combination of all layers stacked in the order they were added. Take a simple example of
two layers as shown in Figure 6.6. Each layer has 3 files, but the overall image has 6 files
as it is the combination of both layers.
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Figure 6.6

Note:We’ve shown the image layers in Figure 6.6 in a slightly different way
to previous figures. This is just to make showing the files easier.

In the slightly more complex example of the three-layer image in Figure 6.7, the overall
image only presents 6 files in the unified view. This is because File 7 in the top layer
is an updated version of File 5 directly below (inline). In this situation, the file in the
higher layer obscures the file directly below it. This allows updated versions of files to be
added as new layers to the image.

Figure 6.7

Docker employs a storage driver that is responsible for stacking layers and presenting
them as a single unified filesystem/image. Examples of storage drivers on Linux include
overlay2, devicemapper, btrfs and zfs. As their names suggest, each one is based on a
Linux filesystem or block-device technology, and each has its own unique performance
characteristics.

No matter which storage driver is used, the user experience is the same.

Figure 6.8 shows the same 3-layer image as it will appear to the system. I.e. all three
layers stacked and merged, giving a single unified view.
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Figure 6.8

Sharing image layers

Multiple images can, and do, share layers. This leads to efficiencies in space and
performance.

The following example shows the output of a docker pull command with the -a flag.
This can be used to download all images in a repository. The command has limitations
and may fail if the repository has images for multiple platforms and architectures such
as Linux and Windows, or amd64 and arm64.

$ docker pull -a nigelpoulton/tu-demo
latest: Pulling from nigelpoulton/tu-demo
aad63a933944: Pull complete
f229563217f5: Pull complete
<Snip>>
Digest: sha256:c9f8e18822...6cbb9a74cf

v1: Pulling from nigelpoulton/tu-demo
aad63a933944: Already exists
f229563217f5: Already exists
<Snip>
fc669453c5af: Pull complete
Digest: sha256:674cb03444...f8598e4d2a

v2: Pulling from nigelpoulton/tu-demo
Digest: sha256:c9f8e18822...6cbb9a74cf
Status: Downloaded newer image for nigelpoulton/tu-demo
docker.io/nigelpoulton/tu-demo

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
nigelpoulton/tu-demo latest d5e1e48cf932 2 weeks ago 104MB
nigelpoulton/tu-demo v2 d5e1e48cf932 2 weeks ago 104MB
nigelpoulton/tu-demo v1 6852022de69d 2 weeks ago 104MB

Notice the lines ending in Already exists.

These lines tell us that Docker is smart enough to recognize when it’s being asked to
pull an image layer that it already has a local copy of. In this example, Docker pulled the
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image tagged as latest first. Then, when it pulled the v1 and v2 images, it noticed that
it already had some of the layers that make up those images. This happens because the
three images in this repository are almost identical, and therefore share many layers. In
fact, the only difference between v1 and v2 is the top layer.

As mentioned previously, Docker on Linux supports many storage drivers. Each is free
to implement image layering, layer sharing, and copy-on-write (CoW) behaviour in its
own way. However, the end result and user experience is the same.

Pulling images by digest

So far, we’ve shown you how to pull images using their name (tag). This is by far the
most common method, but it has a problem— tags are mutable! This means it’s possible
to accidentally tag an image with the wrong tag (name). Sometimes, it’s even possible
to tag an image with the same tag as an existing, but different, image. This can cause
problems!

As an example, imagine you’ve got an image called golftrack:1.5 and it has a known
bug. You pull the image, apply a fix, and push the updated image back to its repository
using the same tag.

Take a moment to consider what happened there… You have an image called golf-
track:1.5 that has a bug. That image is being used by containers in your production
environment. You create a new version of the image that includes a fix. Then comes the
mistake… you build and push the fixed image back to its repository with the same tag
as the vulnerable image!. This overwrites the original image and leaves you without
a great way of knowing which of your production containers are using the vulnerable
image and which are using the fixed image — they both have the same tag!

This is where image digests come to the rescue.

Docker supports content addressable storage model. As part of this model, all images get
a cryptographic content hash. For the purposes of this discussion, we’ll call this hash as
the digest. As the digest is a hash of the contents of the image, it’s impossible to change
the contents of the image without creating a new unique digest. Put another way, you
cannot change the content of an image and keep the old digest. This means digests are
immutable and provide a solution to the problem we just mentioned.

Every time you pull an image, the docker pull command includes the image’s digest as
part of the information returned. You can also view the digests of images in your Docker
host’s local repository by adding the --digests flag to the docker images command.
These are both shown in the following example.
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$ docker pull alpine
Using default tag: latest
latest: Pulling from library/alpine
08409d417260: Pull complete
Digest: sha256:02bb6f42...44c9b11
Status: Downloaded newer image for alpine:latest
docker.io/library/alpine:latest

$ docker images --digests alpine
REPOSITORY TAG DIGEST IMAGE ID CREATED SIZE
alpine latest sha256:02bb6f42...44c9b11 44dd6f223004 9 days ago 7.73MB

The snipped output above shows the digest for the alpine image as -

sha256:02bb6f42...44c9b11

Now that we know the digest of the image, we can use it when pulling the image again.
This will ensure that we get exactly the image we expect!

At the time of writing, there is no native Docker command that will retrieve the digest
of an image from a remote registry such as Docker Hub. This means the only way to
determine the digest of an image is to pull it by tag and then make a note of its digest.
This may change in the future.

The following example deletes the alpine:latest image from your Docker host and
then shows how to pull it again using its digest instead of its tag. The actual digest is
truncated in the book so that it fits on one line. Substitute this for the real digest of the
version you pulled on your own system.

$ docker rmi alpine:latest
Untagged: alpine:latest
Untagged: alpine@sha256:02bb6f428431fbc2809c5d1b41eab5a68350194fb508869a33cb1af4444c9b11
Deleted: sha256:44dd6f2230041eede4ee5e792728313e43921b3e46c1809399391535c0c0183b
Deleted: sha256:94dd7d531fa5695c0c033dcb69f213c2b4c3b5a3ae6e497252ba88da87169c3f

$ docker pull alpinesha256:02bb6f42...44c9b11
docker.io/library/alpine@sha256:02bb6f42...44c9b11: Pulling from library/alpine
08409d417260: Pull complete
Digest: sha256:02bb6f428431...9a33cb1af4444c9b11
Status: Downloaded newer image for alpine@sha256:02bb6f428431...9a33cb1af4444c9b11
docker.io/library/alpine@sha256:02bb6f428431...9a33cb1af4444c9b11

A little bit more about image hashes (digests)

As previously mentioned, an image is a loose collection of independent layers.
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In some ways, the image is just a manifest file that lists the layers and some metadata.
The application and dependencies live in the layers and each layer is fully independent
with no concept of being part of something bigger.

Each image is identified by a crypto ID that is a hash of the manifest file. Each layer is
identified by a crypto ID that is a hash of the layer content.

This means that changing the contents of the image, or any of its layers, will cause the
associated crypto hashes to change. As a result, images and layers are immutable and we
can easily identify if changes have been made.

So far, things are pretty simple. But they’re about to get a bit more complicated.

When we push and pull images, the layers are compressed to save network bandwidth
and storage space in the registry. However, compressed content is different to un-
compressed content. As a result, content hashes no longer match after push or pull
operations.

This presents various problems. For example, Docker Hub verifies every pushed layer to
make sure it wasn’t tampered with en route. To do this, it runs a hash against the layer
content and checks it against the hash that was sent. As the layer was compressed the
hash verification will fail.

To get around this, each layer also gets something called a distribution hash. This is a
hash of the compressed version of the layer and is included with every layer pushed and
pulled to a registry. This is used to verify that the layer arrived without being tampered
with.

Multi-architecture images

One of the best things about Docker is its simplicity. However, as technologies grow
they get more complex. This happened for Docker when it started supporting different
platforms and architectures such as Windows and Linux, on variations of ARM,
x64, PowerPC, and s390x. All of a sudden, popular images had versions for different
platforms and architectures and as users we had to add extra steps to make sure we
were pulling the right version for our environments. This broke the smooth Docker
experience.

Note:We’re using the term “architecture” to refer to CPU architecture such
as x64 and ARM. We use the term “platform” to refer to either the OS (Linux
or Windows) or the combination of OS and architecture.

Multi-architecture images to the rescue!

Fortunately, there’s a slick way of supporting multi-arch images. This means a single
image, such as golang:latest, can have images for Linux on x64, Linux on PowerPC,
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Windows x64, Linux on different versions of ARM, and more. To be clear, we’re talking
about a single image tag supporting multiple platforms and architectures. We’ll see it
in action in a second, but it means you can run a simple docker pull golang:latest
from any platform or architecture and Docker will pull the correct image.

To make this happen, the Registry API supports two important constructs:

• manifest lists

• manifests

Themanifest list is exactly what it sounds like: a list of architectures supported by a
particular image tag. Each supported architecture then has its own manifest that lists the
layers used to build it.

Figure 6.9 uses the official golang image as an example. On the left is themanifest list
with entries for each architecture the image supports. The arrows show that each entry
in themanifest list points to amanifest containing image config and layer data.

Figure 6.9

Let’s look at the theory before seeing it in action.

Assume you’re running Docker on a Raspberry Pi (Linux on ARM). When you pull
an image, Docker makes the relevant calls to Docker Hub. If amanifest list exists for
the image, it will be parsed to see if an entry exists for Linux on ARM. If it exists, the
manifest for the Linux ARM image is retrieved and parsed for the crypto ID’s of the
layers. Each layer is then pulled from Docker Hub and assembled on the Docker host.

Let’s see it in action.
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The following examples start are from a Linux ARM system and a Windows x64 system.
Both start a new container based the official golang image and run the go version
command. The outputs show the version of Go as well as the platform and CPU
architecture of the host. Notice how both commands are exactly the same and Docker
takes care of getting the right image for the platform and architecture!

Linux on arm64 example:

$ docker run --rm golang go version
<Snip>
go version go1.20.4 linux/arm64

Windows on x64 example:

> docker run --rm golang go version
<Snip>
go version go1.20.4 windows/amd64

The Windows Golang image is currently over 2GB in size and may take a long time to
download.

The ‘docker manifest’ command lets you inspect the manifest list of any image on
Docker Hub. The following example inspects the manifest list on Docker Hub for the
golang image. You can see that Linux and Windows are supported on various CPU
architectures. You can run the same command without the grep filter to see the full
JSONmanifest list.

$ docker manifest inspect golang | grep 'architecture\|os'
"architecture": "amd64",
"os": "linux"
"architecture": "arm",
"os": "linux",
"architecture": "arm64",
"os": "linux",
"architecture": "386",
"os": "linux"
"architecture": "mips64le",
"os": "linux"
"architecture": "ppc64le",
"os": "linux"
"architecture": "s390x",
"os": "linux"
"architecture": "amd64",
"os": "windows",
"os.version": "10.0.20348.1726"
"architecture": "amd64",
"os": "windows",
"os.version": "10.0.17763.4377"
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All official images have manifest lists.

You can create your own builds for different platforms and architectures with docker
buildx and then use docker manifest create to create your own manifest lists.

The following command builds an image for ARMv7 called myimage:arm-v7 from the
current directory. It’s based on code in https://github.com/nigelpoulton/psweb.

$ docker buildx build --platform linux/arm/v7 -t myimage:arm-v7 .
[+] Building 43.5s (11/11) FINISHED
=> [internal] load build definition from Dockerfile 0.0s
=> => transferring dockerfile: 368B 0.0s
<Snip>
=> => exporting manifest list sha256:2a621c3d06...84f9395d6 0.0s
=> => naming to docker.io/library/myimage:arm-v7 0.0s
=> => unpacking to docker.io/library/myimage:arm-v7 0.8s

The beauty of the command is that you don’t have to run it from an ARMv7 Docker
node. In fact, the example shown was ran on Linux on x64 hardware.

Deleting Images

When you no longer need an image on your Docker host, you can delete it with the
docker rmi command. rmi is short for remove image.

Deleting an image will remove the image and all of its layers from your Docker host.
This means it will no longer show up in docker images commands and all directories
on the Docker host containing the layer data will be deleted. However, if an image layer
is shared by another image, it won’t be deleted until all images that reference it have
been deleted.

Delete the images pulled in the previous steps with the docker rmi command. The
following example deletes an image by its ID, this might be different on your system.

$ docker rmi 44dd6f223004
Untagged: alpine@sha256:02bb6f428431fbc2809c5d1...9a33cb1af4444c9b11
Deleted: sha256:44dd6f2230041eede4ee5e7...09399391535c0c0183b
Deleted: sha256:94dd7d531fa5695c0c033dc...97252ba88da87169c3f

You can list multiple images on the same command by separating them with whitespace
like the following.

$ docker rmi f70734b6a266 a4d3716dbb72

You won’t be able to delete an image if it’s in use by a running container. You’ll need to
stop and delete any containers before deleting the image.
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A handy shortcut for deleting all images on a Docker host is to run the docker rmi
command and pass it a list of all image IDs on the system by calling docker images with
the -q flag. This is shown next.

If you are following along on a Windows system, this will only work in a PowerShell
terminal. It will not work on a CMD prompt.

$ docker rmi $(docker images -q) -f

To understand how this works, download a couple of images and then run docker
images -q.

$ docker pull alpine
Using default tag: latest
latest: Pulling from library/alpine
08409d417260: Pull complete
Digest: sha256:02bb6f428431fbc2809c5...a33cb1af4444c9b11
Status: Downloaded newer image for alpine:latest
docker.io/library/alpine:latest

$ docker pull ubuntu
Using default tag: latest
latest: Pulling from library/ubuntu
79d0ea7dc1a8: Pull complete
Digest: sha256:dfd64a3b4296d8c9b62aa3...ee20739e8eb54fbf
Status: Downloaded newer image for ubuntu:latest
docker.io/library/ubuntu:latest

$ docker images -q
44dd6f223004
3f5ef9003cef

See how docker images -q returns a list containing just the image IDs of all local
images. Passing this list to docker rmi will delete all images on the system as shown
next.

$ docker rmi $(docker images -q) -f
Untagged: alpine:latest
Untagged: alpine@sha256:02bb6f428431fb...a33cb1af4444c9b11
Deleted: sha256:44dd6f2230041...09399391535c0c0183b
Deleted: sha256:94dd7d531fa56...97252ba88da87169c3f
Untagged: ubuntu:latest
Untagged: ubuntu@sha256:dfd64a3b4296d8...9ee20739e8eb54fbf
Deleted: sha256:3f5ef9003cefb...79cb530c29298550b92
Deleted: sha256:b49483f6a0e69...f3075564c10349774c3

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE

Let’s remind ourselves of the major commands for working with Docker images.
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Images - The commands

• docker pull is the command to download images from remote registries. By
default, images will be pulled from Docker Hub but you can pull from other
registries. This command will pull the image tagged as latest from the alpine
repository on Docker Hub: docker pull alpine:latest.

• docker images lists all of the images stored in your Docker host’s local image
cache. Add the --digests flag to see the SHA256 digests.

• docker inspect is a thing of beauty! It gives you all of the glorious details of an
image — layer data and metadata.

• docker manifest inspect lets you to inspect the manifest list of any image
stored on Docker Hub. This command will show the manifest list for the redis
image: docker manifest inspect redis.

• docker buildx is a Docker CLI plugin that extends the Docker CLI to support
multi-arch builds.

• docker rmi is the command to delete images. This command will delete the
alpine:latest image — docker rmi alpine:latest. You cannot delete an image
that is associated with a container in the running (Up) or stopped (Exited) states.

Chapter summary

In this chapter, we learned about container images. We learned that they contain
everything needed to run an application as a container. This includes just enough OS,
source code files, dependencies, and metadata. Images are used to start containers and
are similar to VM templates or object-oriented programming classes. Under the hood
they are made up of one or more read-only layers, that when stacked together, make up
the overall image.

We used the docker pull command to pull some images into our local Docker host.

We covered image naming, official and unofficial repos, layering, sharing, and crypto
IDs.

We looked at how Docker supports multi-architecture and multi-platform images, and
we finished off by looking at some of the most common commands used to work with
images.

In the next chapter we’ll take a similar tour of containers — the runtime sibling of
images.
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Docker implements the Open Container Initiative (OCI) specifications. This means
everything you learn in this chapter applies to other container runtimes and platforms
that implement the OCI specifications.

We’ll split this chapter into the usual three parts:

• The TLDR

• The deep dive

• The commands

Docker containers - The TLDR

A container is the runtime instance of an image. In the same way that you can start a
virtual machine (VM) from a virtual machine template, you start one or more containers
from a single image. The big difference between a VM and a container is that containers
are smaller, faster, and more portable.

Figure 7.1 shows a single Docker image being used to start multiple Docker containers.

Figure 7.1

The simplest way to start a container is with the docker run command. The command
can take a lot of arguments, but in its most basic form you tell it an image to use and
an app to run: docker run <image> <app>. The following command will start a new
container based on the Ubuntu Linux image and start a Bash shell.
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$ docker run -it ubuntu /bin/bash`

The -it flags connect your current terminal window to the container’s shell.

Containers run until the main app exits. In the previous example, the container will exit
when the Bash shell exits.

A simple way to demonstrate this is to start a new container and tell it to run the sleep
command for 10 seconds. The container will start, seize your terminal for 10 seconds,
then exit. The following is a simple way to demonstrate this on a Linux host.

$ docker run -it alpine:latest sleep 10

You can manually stop a running container with docker stop and restart it with docker
start. To get rid of a container forever, you have to explicitly delete it with docker rm.

That’s the elevator pitch! Now let’s get into the detail…

Docker containers - The deep dive

The first things we’ll cover are the fundamental differences between a container and a
VM. It’s mainly theory at this point, but it’s important stuff.

Containers vs VMs

Containers and VMs both need a host to run on. The host can be anything from your
laptop, a bare metal server in your data center, or an instance in the public cloud.

Let’s assume a requirement where your business has a single physical server that needs
to run 4 business applications.

In the VMmodel, the physical server is powered on and the hypervisor boots. Once
booted, the hypervisor claims all physical resources such as CPU, RAM, storage, and
network cards. It then carves these hardware resources into virtual constructs that look
smell and feel exactly like the real thing. It then packages them into a software construct
called a virtual machine (VM). We take those VMs and install an operating system and
application on each one.

Assuming the scenario of a single physical server needing to run 4 business applications
— we’d create 4 VMs, install 4 operating systems, and then install the 4 applications.
When it’s all done it looks like Figure 7.2.
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Figure 7.2

Things are a bit different in the container model.

The server is powered on and the OS boots. In this container model the host’s OS
claims all hardware resources. Next you install a container engine such as Docker. The
container engine then carves-up theOS resources (process tree, filesystem, network stack
etc) and packages them into virtual operating systems called containers. Each container
looks smells and feels just like a real OS. Inside of each container we run an application.

If we assume the same scenario of a single physical server needing to run 4 business
applications, we’d carve the OS into 4 containers and run a single application inside
each. This is shown in Figure 7.3.
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Figure 7.3

At a high level, hypervisors perform hardware virtualization— they carve up physical
hardware resources into virtual versions called VMs. On the other hand, containers
performOS virtualization— they carve OS resources into virtual versions called
containers.

The VM tax

Let’s build on what we just covered and drill into one of the problems with the hypervi-
sor model.

We started out with a single physical server and the requirement to run 4 business
applications. In the VMmodel we installed a specialised OS called a hypervisor, in the
container model we install any modern OS. So far, the models are almost identical. But
this is where the similarities stop.

The VMmodel carves low-level hardware resources into VMs. Each VM is a software
construct containing virtual CPUs, virtual RAM, virtual disks etc. As such, every
VM needs its own OS to claim, initialize, and manage all of those virtual resources.
Unfortunately, every OS comes with its own set of baggage and overheads. For example,
every OS consumes CPU, RAM, and storage. Some need their own licenses, as well as
people and infrastructure to patch and update them. Each OS also presents a sizable
attack surface. We often refer to all of this as the OS tax, or VM tax— every OS is
steeling resources you’d rather assign to applications.

There’s only one OS kernel in the container model, and that’s running on the shared
host. And it’s possible to hundreds of containers on a single host with a single shared
OS. This means a one OS consuming CPU, RAM, and storage. It also means a single
OS that needs licensing, a single OS that needs updating and patching, and a single OS
presenting an attack surface. All in all, a single OS tax bill.
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That might not seem a lot in our example of a single server running 4 business appli-
cations. But when you start talking about hundreds or thousands of apps, it’s a game-
changer.

Another thing to consider is application start times. Containers start a lot faster than
VMs because they only have to start the application — the kernel is already up and
running on the host. In the VMmodel, each VM needs to boot a full OS before it can
start the app.

This all makes the container model leaner and more efficient than the VMmodel.
You can pack more applications onto less resources, start them faster, and pay less in
licensing and admin costs, as well as present less of an attack surface!

Early versions of containers and container platforms were considered less secure than
VMs. However, that’s been changing and most container engines and platforms now
deploy containers with “sensible defaults” that attempt to lock things down without the
security making things unusable. Lots of technologies exist that can make containers
more secure than VMs, however, they’re sometimes hard to configure. These include
SELinux, AppArmor, seccomp, capabilities, and more.

With the theory out of the way, let’s get our hands-on with containers.

Running containers

You’ll need a working Docker host to follow along with the examples. I recommend
Docker Desktop or Multipass from Canonical. Just search the web or ask your AI how
to install them, they’re super easy.

Checking that Docker is running

The first thing I always do when I log on to a Docker host is run a docker version to
check that Docker is running. It’s a good command because it checks the CLI and engine
components.

$ docker version
Client: Docker Engine - Community
Version: 24.0.0
API version: 1.43
OS/Arch: linux/arm64
Context: default
<Snip>
Server: Docker Engine - Community
Engine:
Version: 24.0.0
API version: 1.43 (minimum version 1.12)
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OS/Arch: linux/arm64
<Snip>

As long as you get a response back in the Client and Server you should be good to go.
If you get an error code in the Server section, there’s a good chance that the Docker
daemon (server) isn’t running, or your user account doesn’t have permission to access
it.

On Linux you need to make sure your user account is a member of the local docker
Unix group. If it isn’t, you can add it with usermod -aG docker <user> and then you’ll
have to restart your shell for the changes to take effect. Alternatively, you can prefix all
docker commands with sudo.

If your user account is already a member of the local docker group, the problem might
be that the Docker daemon isn’t running. To check the status of the Docker daemon, run
one of the following commands depending on your Docker host’s operating system.

Linux systems not using Systemd.

$ service docker status
docker start/running, process 29393

Linux systems using Systemd.

$ systemctl is-active docker
active

Starting a simple container

The simplest way to start a container is with the docker run command.

This command starts a simple container that will run a containerized version of Ubuntu
Linux.

$ docker run -it ubuntu:latest /bin/bash

Unable to find image 'ubuntu:latest' locally
latest: Pulling from library/ubuntu
79d0ea7dc1a8: Pull complete
Digest: sha256:dfd64a3b42...47492599ee20739e8eb54fbf
Status: Downloaded newer image for ubuntu:latest
root@e37f24dc7e0a:/#
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Let’s take a closer look at the command.

docker run tells Docker to run a new container. The -it flags make the container
interactive and attach it to your terminal. The ubuntu:latest argument tells Docker
which image to use to start the container. Finally, /bin/bash is the application to run in
the container.

When you hit Return, the Docker client packages up the command and POSTs it to the
API server running on the Docker daemon. The Docker daemon accepts the command
and searches the host’s local image repository to see if it already has a copy of the image.
In our example it didn’t, so it went to Docker Hub to see if it could find it there. It found
it, pulled it locally, and stored it in the local cache.

Note: In a standard, out-of-the-box Linux installation, the Docker dae-
mon implements the Docker API on a local Unix socket at /var/run/-
docker.sock. On Windows, it listens on a named pipe at npipe:////./pipe/
docker_-engine. It’s also possible to configure the Docker daemon to listen on the
network. The default non-TLS network port for Docker is 2375, the default
TLS port is 2376.

Once the image is pulled, the daemon instructs containerd to start the container. 
containerd tasks runc with creating the container and starting the app.

If you’re following along, your terminal is now attached to the container — look closely 
and you’ll see that your shell prompt has changed. In the example it’s 
root@e37f24dc7e0a:/# but yours will be different. The long number after the @ is the 
first 12 characters of the container’s unique ID.

Try executing some basic commands inside of the container. You might notice that some
of them don’t work. This is because the images are optimized to be lightweight and
don’t have all of the normal commands and packages installed. The following example 
shows a couple of commands — one succeeds and the other one fails.

root@50949b614477:/# ls -l
total 64
lrwxrwxrwx 1 root root 7 Apr 23 11:06 bin -> usr/bin
drwxr-xr-x 2 root root 4096 Apr 15 11:09 boot
drwxr-xr-x 5 root root 360 Apr 27 17:24 dev
drwxr-xr-x 1 root root 4096 Apr 27 17:24 etc
drwxr-xr-x 2 root root 4096 Apr 15 11:09 home
lrwxrwxrwx 1 root root 7 Apr 23 11:06 lib -> usr/lib
<Snip>

root@50949b614477:/# ping nigelpoulton.com
bash: ping: command not found

As you can see, the ping utility isn’t included as part of the official Ubuntu image.
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Container processes

When we started the Ubuntu container, we told it to run the Bash shell (/bin/bash).
This makes the Bash shell the one-and-only process running inside the container. You
can see this by running ps -elf from inside the container.

root@e37f24dc7e0a:/# ps -elf
F S UID PID PPID NI ADDR SZ WCHAN STIME TTY TIME CMD
4 S root 1 0 0 - 4558 wait 00:47 ? 00:00:00 /bin/bash
0 R root 11 1 0 - 8604 - 00:52 ? 00:00:00 ps -elf

The first process in the list, with PID 1, is the Bash shell we told the container to run.
The second process is the ps -elf command we ran to produce the list. This is a
short-lived process that exits as soon as the output is displayed. Long story short, this
container is running a single process — /bin/bash.

Typing exit while logged in to the container will terminate the Bash process and the
whole container will exit (terminate). This is because a container cannot exist without its
designated main process. This is true of Linux and Windows containers — killing the
main process in the container will kill the container.

Press Ctrl-PQ to exit the container without terminating its main process. Doing this
will place you back in the shell of your Docker host and leave the container running
in the background. You can use the docker ps command to view the list of running
containers on your system.

$ docker ps
CNTNR ID IMAGE COMMAND CREATED STATUS NAMES
e37..7e0a ubuntu:latest /bin/bash 6 mins Up 6mins sick_montalcini

It’s important to understand that this container is still running and you can re-attach
your terminal to it with the docker exec command.

$ docker exec -it e37f24dc7e0a bash
root@e37f24dc7e0a:/#

As you can see, the shell prompt has changed back to the container. If you run the ps -
elf command again you will now see two Bash processes. This is because the docker
exec command created a new Bash process and attached to that. This means typing
exit in this shell will not terminate the container, because the original Bash process will
continue running.

Type exit to leave the container and verify it’s still running with a docker ps. It will
still be running.
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If you are following along with the examples, you should stop and delete the container
with the following two commands (you will need to substitute the ID of your container).
It may take a few seconds for the container to gracefully stop.

$ docker stop e37f24dc7e0a
e37f24dc7e0a

$ docker rm e37f24dc7e0a
e37f24dc7e0a

Container lifecycle

In this section, we’ll look at the lifecycle of a container — from birth, through vacations
and work, to eventual death.

We’ve already seen how to start containers with the docker run command. Let’s start
another one so we can walk it through its entire lifecycle.

$ docker run --name percy -it ubuntu:latest /bin/bash
root@9cb2d2fd1d65:/#

That’s the container created, and we named it “percy” for persistent.

Now let’s put it to work by writing some data to it.

The following procedure writes some text to a new file in the /tmp directory and verifies
the operation succeeded. Be sure to run these commands from within the container you
just started.

root@9cb2d2fd1d65:/# cd tmp

root@9cb2d2fd1d65:/tmp# ls -l
total 0

root@9cb2d2fd1d65:/tmp# echo "Sunderland is the greatest football team in the world" > newfile

root@9cb2d2fd1d65:/tmp# ls -l
total 4
-rw-r--r-- 1 root root 14 Apr 27 11:22 newfile

root@9cb2d2fd1d65:/tmp# cat newfile
Sunderland is the greatest football team in the world

Press Ctrl-PQ to exit the container without killing it.

Now use the docker stop command to stop the container and put in on vacation. It’ll
take a few seconds while it travels to its vacation destination ;-)
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$ docker stop percy
percy

You can use the container’s name or ID with the docker stop command. The format is
docker stop <container-id or container-name>.

Now run a docker ps to list all running containers.

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

The container isn’t listed in the output because it’s in the stopped state. Run the same
command again with the -a flag to show all containers, including those that are stopped.

$ docker ps -a
CNTNR ID IMAGE COMMAND CREATED STATUS NAMES
9cb...65 ubuntu:latest /bin/bash 4 mins Exited (0) percy

This time we see the container showing as Exited (137). Stopping a container is like
stopping a virtual machine — it’s no longer running, but its entire configuration and
contents still exist on the Docker host. This means it can be restarted at any time.

Let’s use the docker start command to bring it back from vacation.

$ docker start percy
percy

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES
9cb2d2fd1d65 ubuntu:latest "/bin/bash" 4 mins Up 7 secs percy

The stopped container is now restarted. Time to verify that the file we created earlier
still exists. Connect to the restarted container with the docker exec command.

$ docker exec -it percy bash
root@9cb2d2fd1d65:/#

Your shell prompt will change to show that you are now operating within the namespace
of the container.

Verify the file is still there and contains the data you wrote to it.
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root@9cb2d2fd1d65:/# cd tmp
root@9cb2d2fd1d65:/# ls -l
-rw-r--r-- 1 root root 14 Sep 13 04:22 newfile

root@9cb2d2fd1d65:/# cat newfile
Sunderland is the greatest football team in the world

As if by magic, the file you created is still there and the contents are exactly how you
left it. This proves that stopping a container does not destroy the container or the data
inside of it.

While this example illustrates the persistent nature of containers, it’s important you
understand two things:

1. The data created in this example is stored on the Docker hosts local filesystem. If
the Docker host fails, the data will be lost.

2. Containers are designed to be immutable objects and it’s not a good practice to
write data to them.

For these reasons, Docker provides volumes. These exist outside of containers but can be
mounted into them.

At this stage of your journey, this was an effective example of a container lifecycle, and
you’d be hard pressed to draw a major difference between the lifecycle of a container
and a VM.

Now let’s kill the container and delete it from the system.

You can forcibly delete a running container with a single command. However, it might be
best to stop it first, giving the application a chance to stop gracefully. More on this in a
second.

The next example will stop the percy container, delete it, and verify the operation. If
your terminal is still attached to the percy container, you’ll need to press Ctrl-PQ to
gracefully disconnect.

$ docker stop percy
percy

$ docker rm percy
percy

$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

The container is now deleted — literally wiped off the face of the planet. If it was a good
container, it becomes aWebAssembly app in the next life. If it was a naughty container, it
becomes a dumb terminal :-D
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Summarizing the lifecycle of a container. You can stop, start, pause, and restart a
container as many times as you want. It’s not until you explicitly delete it that you run
a chance of losing its data. Even then, if you’re storing data outside the container in a
volume, the data will persist even after the container has gone.

Let’s quickly mention why we recommended a two-stage approach of stopping the
container before deleting it.

Stopping containers gracefully

In the previous example, the container was running the /bin/bash app. When you
kill a running container with docker rm <container> -f, the container is killed
immediately without warning. You’re literally giving the container, and the app it’s
running, no chance to complete any operations and gracefully exit.

However, the docker stop command is far more polite. It gives the process inside of the
container ∼10 seconds to complete any final tasks and gracefully shutdown. Once the
command completes, you can delete the container with docker rm.

Behind the scenes the docker stop command sends a SIGTERM signal to the main
application process inside the container (PID 1). This is a request to terminate and
gives the process a chance to clean things up and gracefully shut itself down. If it’s still
running after 10 seconds it will be issued a SIGKILLwhich terminates it with force.

A docker rm <container> -f doesn’t bother asking nicely with a SIGTERM, it goes
straight to the SIGKILL.

Self-healing containers with restart policies

It’s often a good idea to run containers with a restart policy. This is a very basic form
of self-healing that allows the local Docker engine to automatically restart failed
containers.

Restart policies are applied per-container. They can be configured imperatively on the
command line as part of docker run commands, or declaratively in YAML files for use
with higher-level tools such as Docker Swarm, Docker Compose, and Kubernetes.

At the time of writing, the following restart policies exist:

• always

• unless-stopped

• on-failure
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The always policy is the simplest. It always restarts a failed container unless it’s
been explicitly stopped. An easy way to demonstrate this is to start a new interactive
container with the --restart always policy and tell it to run a shell process. When
the container starts you’ll be automatically attached to its shell. Typing exit from the
shell will kill the container’s PID 1 process and kill the container. However, Docker
will automatically restart it because it has the --restart always policy. If you issue a
docker ps command, you’ll see that the container’s uptime is less than the time since it
was created. Let’s put it to the test.

$ docker run --name neversaydie -it --restart always alpine sh
/#

Wait a few seconds before typing the exit command.

Once you’ve exited the container and are back at your normal shell prompt, check the
container’s status.

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS NAME
0901afb84439 alpine "sh" 35 seconds ago Up 9 seconds neversaydie

See how the container was created 35 seconds ago but has only been up for 9 seconds.
This is because the exit command killed it and Docker restarted it. Be aware that
Docker has restarted the same container and not created a new one. In fact, if you
inspect it with docker inspect you can see the restartCount has been incremented.

An interesting feature of the --restart always policy is that if you stop a container
with docker stop and then restart the Docker daemon, the container will be restarted.
To be clear… you start a new container with the --restart always policy and then
intentionally stop it with the docker stop command. At this point the container is in
the Stopped (Exited) state. However, if you restart the Docker daemon, the container
will be automatically restarted when the daemon comes back up. You need to be aware
of this.

The main difference between the always and unless-stopped policies is that containers
with the --restart unless-stopped policy will not be restarted when the daemon
restarts if they were in the Stopped (Exited) state. That might be a confusing sentence,
so let’s walk through an example.

We’ll create two new containers. One called “always” with the --restart always policy,
and one called “unless-stopped” with the --restart unless-stopped policy. We’ll
stop them both with the docker stop command and then restart Docker. The “always”
container will restart, but the “unless-stopped” container will not.

1. Create the two new containers
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$ docker run -d --name always \
--restart always \
alpine sleep 1d

$ docker run -d --name unless-stopped \
--restart unless-stopped \
alpine sleep 1d

$ docker ps
CONTAINER ID IMAGE COMMAND STATUS NAMES
3142bd91ecc4 alpine "sleep 1d" Up 2 secs unless-stopped
4f1b431ac729 alpine "sleep 1d" Up 17 secs always

We now have two containers running. One called “always” and one called “unless-
stopped”.

2. Stop both containers

$ docker stop always unless-stopped

$ docker ps -a
CONTAINER ID IMAGE STATUS NAMES
3142bd91ecc4 alpine Exited (137) 3 seconds ago unless-stopped
4f1b431ac729 alpine Exited (137) 3 seconds ago always

3. Restart Docker.

The process for restarting Docker is different on different Operating Systems. This
example shows how to stop Docker on Linux hosts running systemd. If asked for a
password, just re-run the command with sudo in front of it.

$ systemctl restart docker

4. Once Docker has restarted, you can check the status of the containers.

$ docker ps -a
CONTAINER CREATED STATUS NAMES
314..cc4 2 minutes ago Exited (137) 2 minutes ago unless-stopped
4f1..729 2 minutes ago Up 9 seconds always

Notice that the “always” container (started with the --restart always policy) has
been restarted, but the “unless-stopped” container (started with the --restart unless-
stopped policy) has not.

The on-failure policy will restart a container if it exits with a non-zero exit code. It will
also restart containers when the Docker daemon restarts, even ones that were in the
stopped state.

If you are working with Docker Compose or Docker Stacks, you can apply the restart
policy to a service object as follows. We’ll talk more about these technologies later in
the book.
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services:
myservice:
<Snip>
restart_policy:

condition: always | unless-stopped | on-failure

Web server example

So far, we’ve seen how to start a simple container and interact with it. We’ve also seen
how to stop, restart and delete containers. Now let’s take a look at a Linux-based web
server example.

In this example, we’ll start a new container from an image that contains a simple nodejs
app running on port 8080.

Run the docker stop and docker rm commands to clean up any containers from
previous examples.

Run the following command to start a new web server container.

$ docker run -d --name webserver -p 80:8080 \
nigelpoulton/ddd-book:web0.1

Notice that your shell prompt hasn’t changed. This is because the container was started
in the background with the -d flag. Starting a container like this doesn’t attach it to your
terminal.

Let’s take a look at some of the other arguments in the command.

We know docker run starts a new container. However, this time we give it the -d flag
instead of -it. -d stands for detached or daemon mode and tells the container to run in
the background. You can’t use the -d and -it flags in the same command.

After that, the command names the container “webserver”. The -p flag maps port 80 on
the Docker host to port 8080 inside the container. This means that traffic hitting the
Docker host on port 80 will be directed to port 8080 inside of the container. The image
we’re using for this container contains a web service that listens on port 8080. This
means the container will come up running a web server listening on port 8080.

Finally, the command tells the container to base itself on the nigelpoulton/ddd-
book:web0.1 image. The image contains a node.js webserver and all dependencies. It
is maintained approximately once per year, so will contain vulnerabilities!

Once the container is running, a docker ps command will show the container as
running and the ports that are mapped. It’s important to know that port mappings are
expressed as host-port:container-port.
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$ docker ps
CONTAINER ID COMMAND STATUS PORTS NAMES
b92d95e0b95b "node ./app.js" Up 2 mins 0.0.0.0:80->8080/tcp webserver

Some of the columns have been removed from the output to help with readability.

Now that the container is running and ports are mapped, you can connect to the it
by pointing a web browser at the IP address or DNS name of yourDocker host on
port 80. If you’re running Docker locally using Docker Desktop you can connect to
localhost:80 or 127.0.0.1:80.

Figure 7.4 shows the web page that is being served up by the container.

Figure 7.4

The same docker stop, docker pause, docker start, and docker rm commands can
be used on the container.

Inspecting containers

In the previous web server example, you might have noticed that we didn’t specify an
app for the container when we issued the docker run command. Yet the container ran a
web service. How did this happen?

When building a Docker image, you can embed an instruction that lists the default
app for any containers that use the image. You can see this for any image by running a
docker inspect.
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$ docker inspect nigelpoulton/ddd-book:web0.1

[
{

"Id": "sha256:4b4292644137e5de...fc6d0835089b",
"RepoTags": [

"nigelpoulton/ddd-book:web0.1"

<Snip>

],
"Entrypoint": [

"node",
"./app.js"

],
<Snip>

The output is snipped to make it easier to find the information we’re interested in.

The entries after Cmd or Entrypoint show the app that the container will run unless you
override it with a different one when you launch it with docker run.

It’s common to build images with default commands like this as it makes starting
containers easier. It also forces a default behavior and is a form of self documentation
— i.e. you can inspect the image and know what app it’s designed to run.

That’s us done for the examples in this chapter. Let’s see a quick way to tidy our system
up.

Tidying up

Let’s look at the simplest and quickest way to get rid of every running container on
a Docker host. Be warned though, this procedure will forcibly destroy all containers
without giving them a chance to clean up. This should never be performed on
production systems or systems running important containers.

Run the following command from the shell of your Docker host to delete all containers.
It will delete all containers without warning.

$ docker rmi $(docker ps -aq) -f
b92d95e0b95b

This example only had a single container running, so only one was deleted. However,
the command works the same way as the docker rmi $(docker images -q) command
we used in the previous chapter to delete all images on a single Docker host. We already
know the docker container rm command deletes containers. Passing it $(docker ps
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-aq) as an argument, effectively passes it the ID of every container on the system. The -f
flag forces the operation so that even containers in the running state will be destroyed.
Net result… all containers, running or stopped, will be destroyed and removed from the
system.

Containers - The commands

• docker run is the command used to start new containers. In its simplest form,
it accepts an image and a command as arguments. The image is used to create the
container and the command is the application the container will run when it starts.
This example will start an Ubuntu container in the foreground and tell it to run
the Bash shell: docker run -it ubuntu /bin/bash.

• Ctrl-PQ will detach your shell from the terminal of a container and leave the
container running in the background.

• docker ps lists all containers in the running state. If you add the -a flag you will
also see containers in the stopped (Exited) state.

• docker exec runs a new process inside of a running container. It’s useful for
attaching the shell of your Docker host to a terminal inside a running container.
This command will start a new Bash shell inside a running container and connect
to it: docker exec -it <container-name or container-id> bash. For this to
work, the image used to create the container must include the Bash shell.

• docker stop will stop a running container and put it in the Exited (0) state. It
issues a SIGTERM to the process with PID 1 inside of the container. If the process
hasn’t cleaned up and stopped within 10 seconds it will send a SIGKILL to forcibly
stop the container. docker stop accepts container IDs and container names as
arguments.

• docker start will restart a stopped container. You can give it the name or ID of a
container.

• docker rm will delete a stopped container. You can specify containers by name or
ID. It is recommended that you stop a container with the docker stop command
before deleting it with docker rm.

• docker inspect will show you detailed configuration and runtime information
about a container. It accepts container names and container IDs as its main
argument.
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Chapter summary

In this chapter, we compared and contrasted the container and VMmodels. We looked
at the OS tax problem inherent in the VMmodel and saw how the container model can
bring huge advantages.

We saw how to use the docker run command to start a couple of simple containers, and
we saw the difference between interactive containers in the foreground and daemon
containers running in the background.

We know that killing the PID 1 process inside of a container will kill the container, and
we’ve seen how to start, stop, and delete containers.

We finished the chapter using the docker inspect command to view detailed container
metadata.
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Docker is all about making it easy to take application source code and get it running in a
container. This process is called containerization.

In this chapter, we’ll walk through the process of containerizing some simple Linux
apps. You’ll need a Docker environment if you want to follow along. Any of the environ-
ments form the Getting Docker chapter will work.

We’ll split this chapter into the usual three parts:

• The TLDR

• The deep dive

• The commands

Let’s containerize an app!

Containerizing an app - The TLDR

Containers are all about making apps simple to build, ship, and run. The end-to-end
process looks like this:

1. Start with your application code and dependencies

2. Create a Dockerfile that describes your app, dependencies, and how to run it

3. Build it into an image by passing the Dockerfile to the docker build command

4. Push the new image to a registry (optional)

5. Run a container from the image

Figure 8.1 shows the process in picture form.
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Figure 8.1 - Basic flow of containerizing an app

Containerizing an app - The deep dive

We’ll break up this Deep Dive section as follows:

• Containerize a single-container app

• Moving to Production with multi-stage builds

• Multi-platform builds

• A few best practices

Containerize a single-container app

This section of the chapter walks through the process of containerizing a simple Node.js
app.

We’ll complete the following high-level steps:

• Clone the repo to get the app code

• Inspect the Dockerfile

• Containerize the app

• Run the app
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• Test the app

• Look a bit closer

Getting the application code

The application used in this example is available from the book’s GitHub repo at:

• https://github.com/nigelpoulton/ddd-book

Run the following command to clone the repo. You’ll need git installed to complete this
step.

$ git clone https://github.com/nigelpoulton/ddd-book.git

Cloning into 'ddd-book'...
remote: Enumerating objects: 47, done.
remote: Counting objects: 100% (47/47), done.
remote: Compressing objects: 100% (32/32), done.
remote: Total 47 (delta 11), reused 44 (delta 11), pack-reused 0
Receiving objects: 100% (47/47), 167.30 KiB | 1.66 MiB/s, done.
Resolving deltas: 100% (11/11), done.

The clone operation creates a new directory called ddd-book in your working directory.
Change directory into ddd-book/web-app and list its contents.

$ cd ddd-book/web-app

$ ls -l
total 20
-rw-rw-r-- 1 ubuntu ubuntu 324 May 20 07:44 Dockerfile
-rw-rw-r-- 1 ubuntu ubuntu 377 May 20 07:44 README.md
-rw-rw-r-- 1 ubuntu ubuntu 341 May 20 07:44 app.js
-rw-rw-r-- 1 ubuntu ubuntu 404 May 20 07:44 package.json
drwxrwxr-x 2 ubuntu ubuntu 4096 May 20 07:44 views

This directory is called the build context and contains all of the application source code,
as well as file containing a list of dependencies. It’s also a common practice to keep the
application’s Dockerfile in the build context.

Now that we have the app code, let’s look at its Dockerfile.



96 8: Containerizing an app

Inspecting the Dockerfile

A Dockerfile describes an application and tells Docker how to build it into an image.

Do not underestimate the impact of the Dockerfile as a form of documentation. It’s a
great document for bridging the gap between developers and operations. It also has
the power to speed up on-boarding of new team members. This is because the file
accurately describes the application and its dependencies in an easy-to-read format. You
should treat it like you treat source code and keep it in a version control system.

Let’s look at the contents of this application’s Dockerfile.

$ cat Dockerfile

FROM alpine
LABEL maintainer="nigelpoulton@hotmail.com"
RUN apk add --update nodejs npm
COPY . /src
WORKDIR /src
RUN npm install
EXPOSE 8080
ENTRYPOINT ["node", "./app.js"]

At a high-level, the example Dockerfile says: Start with the alpine image, make a note
that “nigelpoulton@hotmail.com” is the maintainer, install Node.js and NPM, copy
everything in the build context to the /src directory in the image, set the working
directory as /src, install dependencies, document the app’s network port, and set
app.js as the default application to run.

Let’s look at it in a bit more detail.

Dockerfiles normally start with the FROM instruction. This pulls an image that will be
used as the base layer for the image the Dockerfile will build – everything else will be
added as new layers above this base layer. The app being defined in this Dockerfile is a
Linux app, so it’s important that the FROM instruction refers to a Linux-based image.
If you’re containerizing a Windows application, you’ll need to specify an appropriate
Windows base image.

At this point in the Dockerfile, the image has a single layer as shown in Figure 8.2.

Figure 8.2
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Next, the Dockerfile creates a LABEL that specifies “nigelpoulton@hotmail.com” as
the maintainer of the image. Labels are optional key-value pairs and are a good way of
adding custom metadata. It’s considered a best practice to list a maintainer so that other
users have a point of contact to report problems etc.

The RUN apk add --update nodejs nodejs-npm instruction uses the apk package
manager to install nodejs and nodejs-npm into the image. It does this by adding a new
layer and installing the packages to this layer. At this point in the Dockerfile, the image
looks like Figure 8.3.

Figure 8.3

The COPY . /src instruction creates another new layer and copies in the application
and dependency files from the build context. Now the image has three layers as shown in
Figure 8.4.

Figure 8.4

Next, the Dockerfile uses the WORKDIR instruction to set the working directory for the
rest of the instructions. This creates metadata and does not create a new image layer.

The RUN npm install instruction runs within the context of the WORKDIR set in the
previous instruction, and installs the dependencies listed in package.json into another
new layer. At this point in the Dockerfile the image has four layers as shown in Figure
8.5.
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Figure 8.5

The application exposes a web service on port 8080, so the Dockerfile documents
this with the EXPOSE 8080 instruction. Finally, the ENTRYPOINT instruction sets the
application to run when started as a container. Both of these are added as metadata and
do not create new layers.

Containerize the app/build the image

Now that we understand the theory, let’s see it in action.

The following command will build a new image called ddd-book:ch8.1. The period (.)
at the end of the command tells Docker to use the working directory as the build context.
Remember, the build context is where the app and all dependencies are stored.

Be sure to include the trailing period (.) and be sure to run the command from the web-
app directory.

$ docker build -t ddd-book:ch8.1 .

[+] Building 16.2s (10/10) FINISHED
=> [internal] load build definition from Dockerfile 0.0s
=> => transferring dockerfile: 335B 0.0s
=> => transferring context: 2B 0.0s
=> [1/5] FROM docker.io/library/alpine 0.1s
=> CACHED [2/5] RUN apk add --update nodejs npm curl 0.0s
=> [3/5] COPY . /src 0.0s
=> [4/5] WORKDIR /src 0.0s
=> [5/5] RUN npm install 10.4s
=> exporting to image 0.2s
=> => exporting layers 0.2s
=> => writing image sha256:f282569b8bd0f0...016cc1adafc91 0.0s
=> => naming to docker.io/library/ddd-book:ch8.1

Notice the five numbered steps reported in the build output. Those are the steps that
create the five image layers.
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Check that the image exists in your Docker host’s local repository.

$ docker images
REPO TAG IMAGE ID CREATED SIZE
ddd-book ch8.1 f282569b8bd0 4 minutes ago 95.4MB

Congratulations, the app is containerized!

You can use the docker inspect ddd-book:ch8.1 command to verify the configuration
of the image. It will list all of the settings that were configured from the Dockerfile.
Look out for the list of image layers and the Entrypoint command.

$ docker inspect ddd-book:ch8.1
[

{
"Id": "sha256:f282569b8bd0...016cc1adafc91",
"RepoTags": [

"ddd-book:ch8.1"
<Snip>
"WorkingDir": "/src",
"Entrypoint": [

"node",
"./app.js"

],
"Labels": {

"maintainer": "nigelpoulton@hotmail.com"
<Snip>
"Layers": [

"sha256:94dd7d531fa5695c0c033dcb69f213c2b4c3b5a3ae6e497252ba88da87169c3f",
"sha256:a990a785ba64395c8b9d05fbe32176d1fb3edd94f6fe128ed7415fd7e0bb4231",
"sha256:efeb99f5a1b27e36bc6c46ea9eb2ba4aab942b47547df20ee8297d3184241b1d",
"sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef",
"sha256:ccf07adfaecfba485ecd7274c092e7343c45e539fa4371c5325e664122c7c92b"

]
<Snip>

Pushing images

Once you’ve created an image, it’s a good idea to store it in a registry to keep it safe and
make it available to others. Docker Hub is the most common public image registry and
it’s the default push location for docker push commands.

You’ll need a Docker ID and if you want to push the image to Docker Hub. You’ll also
need to tag the image appropriately.

If you don’t already have a Docker Hub ID, go to hub.docker.com and sign-up for one
now, they’re free.

Be sure to substitute my Docker ID with your own in the examples. So, any time you see
nigelpoulton, swap it out for your Docker ID (Docker Hub username).
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$ docker login
Login with your Docker ID to push and pull images from Docker Hub.
Username: nigelpoulton
Password:
WARNING! Your password will be stored unencrypted in /home/ubuntu/.docker/config.json.
Configure a credential helper to remove this warning.

Images need to be appropriately tagged before you can push them. This is because the
tag includes the following important registry-related information:

• Registry DNS name

• Repository name

• Tag

Docker is opinionated about registries – it assumes you want to push to Docker Hub.
You can push to other registries by adding the registry URL to the beginning of the
image tag.

The previous docker images output shows the image is tagged as ddd-book:ch8.1.
docker push will try and push this to a repository called ddd-book on Docker Hub.
However, this repository doesn’t exist and I wouldn’t have access to it anyway, as all of
my repositories exist in the nigelpoulton second-level namespace. This means I need
to re-tag the image to include my Docker ID. Remember to substitute your own Docker
ID.

The format of the command is docker tag <current-tag> <new-tag>. This adds an
additional tag and does not overwrite the original.

$ docker tag ddd-book:ch8.1 nigelpoulton/ddd-book:ch8.1

Running another docker images shows the image now has two tags.

$ docker images
REPO TAG IMAGE ID CREATED SIZE
ddd-book ch8.1 f282569b8bd0 13 mins ago 95.4MB
nigelpoulton/ddd-book ch8.1 f282569b8bd0 13 mins ago 95.4MB

Now we can push it to Docker Hub. Be sure to substitute your Docker ID.
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$ docker push nigelpoulton/ddd-book:ch8.1
The push refers to repository [docker.io/nigelpoulton/ddd-book]
ccf07adfaecf: Pushed
5f70bf18a086: Layer already exists
efeb99f5a1b2: Pushed
a990a785ba64: Pushed
94dd7d531fa5: Layer already exists
ch8.1: digest: sha256:80063789bce73a17...09ea29c5e6a91c28b4 size: 1365

Figure 8.6 shows how Docker worked out the push location.

Figure 8.6

Now that the image is pushed to a registry, you can access it from anywhere with an
internet connection. You can also grant other people access to pull it and push changes.

Run the app

The containerized application is a web server that listens on port 8080. You can verify
this in the app.js file in the build context you cloned from GitHub.

The following command will start a new container called c1 based on the ddd-book:ch8.1
image you just created. It maps port 80 on the Docker host, to port 8080 inside the
container. This means you’ll be able to point a web browser at the DNS name or IP
address of the Docker host running the container and access the app.

Note: If your host is already running a service on port 80 you’ll get a port is
already allocated error. If this happens, specify a different port such as 5000
or 5001. For example, to map the app to port 5000 on the Docker host, use
the -p 5000:8080 flag.
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$ docker run -d --name c1 \
-p 80:8080 \
ddd-book:ch8.1

The -d flag runs the container in the background, and the -p 80:8080 flag maps port 80
on the host to port 8080 inside the running container.

Check that the container is running and verify the port mapping.

$ docker ps

ID IMAGE COMMAND STATUS PORTS NAMES
49.. ddd-book:ch8.1 "node ./app.js" UP 18 secs 0.0.0.0:80->8080/tcp c1

The output above is snipped for readability but shows that the container is running.
Note that port 80 is mapped on all host interfaces (0.0.0.0:80).

Test the app

Open a web browser and point it to the DNS name or IP address of the host that the
container is running on. If you’re using Docker Desktop or another technology that
runs the container on your local machine, you can use localhost as the DNS name.
Otherwise, use the IP or DNS of the Docker host.

You’ll see the web page shown in Figure 8.7.

Figure 8.7

If the test doesn’t work, try the following:

1. Make sure the container is up and running with the docker ps command. The
container name is c1 and you should see the port mapping as 0.0.0.0:80-
>8080/tcp.
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2. Check that firewall and other network security settings aren’t blocking traffic to
port 80 on the Docker host.

3. Retry the docker run command specifying a high numbered port on the Docker
host such as -p 5001:8080.

Congratulations, the application is containerized and running as a container!

Looking a bit closer

Now that the application is containerized, let’s take a closer look at how some of the
machinery works.

The docker build command parses the Dockerfile one-line-at-a-time starting from the
top.

Comment lines start with the # character.

All non-comment lines are Instructions and take the format <INSTRUCTION< <argu-
ments>. Instruction names are not case sensitive but it’s normal practice to write them
in UPPERCASE to make reading the file easier.

Some instructions create new layers whereas others just add metadata.

Examples of instructions that create new layers are FROM, RUN, and COPY. Examples that
create metadata include EXPOSE, WORKDIR, ENV, and ENTRYPOINT. The basic premise is
this — if an instruction adds content such as files and programs, it will create a new layer.
If it is adding instructions on how to build the image and run the container, it will create
metadata.

You can view the instructions that were used to build the image with the docker
history command.

$ docker history ddd-book:ch8.1

IMAGE CREATED BY SIZE
f282569b8bd0 ENTRYPOINT ["node" "./app.js"] 0B
<missing> EXPOSE map[8080/tcp:{}] 0B
<missing> RUN /bin/sh -c npm install 24.2MB
<missing> WORKDIR /src 0B
<missing> COPY . /src # 8.41kB
<missing> RUN /bin/sh -c apk add --update nodejs npm 63.4MB
<missing> LABEL maintainer=nigelpoulton@hotmail.com 0B
<missing> /bin/sh -c #(nop) CMD ["/bin/sh"] 0B
<missing> /bin/sh -c #(nop) ADD file:df7fccc3453b6ec1 7.73MB

Two things from the output are worth noting.
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First. Each line corresponds to an instruction in the Dockerfile (starting from the
bottom and working up). The CREATED BY column even lists the exact Dockerfile
instruction that was executed.

Second. Only 4 of the lines displayed in the output create new layers (the ones with
non-zero values in the SIZE column). These correspond to the FROM, RUN, and COPY
instructions in the Dockerfile. The other instructions create metadata instead of layers.

Use the docker inspect command to see the list of image layers.

$ docker inspect ddd-book:ch8.1

<Snip>
},
"RootFS": {

"Type": "layers",
"Layers": [

"sha256:94dd7d531fa5695c0c033dcb69f213c2b4c3b5a3ae6e497252ba88da87169c3f",
"sha256:a990a785ba64395c8b9d05fbe32176d1fb3edd94f6fe128ed7415fd7e0bb4231",
"sha256:efeb99f5a1b27e36bc6c46ea9eb2ba4aab942b47547df20ee8297d3184241b1d",
"sha256:ccf07adfaecfba485ecd7274c092e7343c45e539fa4371c5325e664122c7c92b"

]
},

Figure 8.8 maps the Dockerfile instructions to image layers. The layer IDs will be
different in your environment. The Dockerfile instructions with arrows from them
create layers, the others don’t.

Figure 8.8

Note: There may be a bug in the builder used by Docker that causes the WORKDIR
instruction to create a layer. This may cause your environment to show more layers
than expected.
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It’s considered a good practice to use images from official repositories as the base layer
for new images. This is because their content is vetted and they are quick to release new
versions when vulnerabilities are fixed.

Moving to production with Multi-stage Builds

When it comes to Docker images, big is bad! For example:

• Big means slow

• Big means more potential vulnerabilities

• Big means a bigger attack surface

For these reasons, container images should only contain the stuff needed to run your
app in production.

In the past, keeping images small was hard work. However, multi-stage builds make it
easy. Here’s the high-level…

Multi-stage builds have multiple FROM instructions in a single Dockerfile, and each FROM
instruction is a new build stage. You can do the heavy-lifting work of building your app
in a large image with all the compilers and other build tools required. You can then copy
the final production app into a tiny image used for production. You can also perform
build steps in parallel for faster builds.

A high-level flow is shown in Figure 8.9. Stage 1 build an image with all the build and
compilation tools you need. Stage 2 copies in your app code and builds it. Stage 3 creates
a small production-ready image with just the bits required to run the app.

Figure 8.9
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Let’s look at an example!

All the code for the example is in the multi-stage folder of the book’s GitHub repo. The
example is a simple Go app with a client and server and is borrowed from the Docker
samples buildme repo on GitHub. Don’t worry if you’re not a Go programmer, we’ll only
focus on the Dockerfile. The only thing you need to know is that it builds the client and
server apps into executable files that do not need the Go language or any other tools or
runtime in order to execute.

The Dockerfile is shown below:

FROM golang:1.20-alpine AS base
WORKDIR /src
COPY go.mod go.sum .
RUN go mod download
COPY . .

FROM base AS build-client
RUN go build -o /bin/client ./cmd/client

FROM base AS build-server
RUN go build -o /bin/server ./cmd/server

FROM scratch AS prod
COPY --from=build-client /bin/client /bin/
COPY --from=build-server /bin/server /bin/
ENTRYPOINT [ "/bin/server" ]

The first thing to note is that the Dockerfile has four FROM instructions. Each of these is
a distinct build stage and Docker numbers them starting from 0. However, each stage
has been given a friendly name.

• Stage 0 is called base

• Stage 1 is called build-client

• Stage 2 is called build-server

• Stage 3 is called prod

Each stage outputs an image that can be used by other stages. These intermediate images
are cleaned up when the final build completes.

The goal of the base stage is to create a reusable build image with all the tools needed to
build the application in the later stages. The image created by this stage will only be used
to build the app and not used for production.

It pulls the golang:1.20-alpine image which is over 250MB when uncompressed on
the host. It sets the working directory to /src and copies in the go.mod and go.sum files.
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These list the application dependencies and hashes. Next, it installs the dependencies
and copies the app code into the image. This stage will add three new layers containing
a lot of build stuff but not very much app code. When this build stage is complete it will
output a large image that can be used by later stages.

The build-client stage doesn’t pull a new image. Instead, it uses the FROM base AS
build-client instruction to use the intermediate image created by the base stage. It
then uses a RUN instruction to build the client app into a binary executable. The goal of
this stage is to create an image with the compiled client binary that can be referenced by
later build stages.

The build-server stage does the same for the server component of the app and outputs
an image that can be referenced by later stages as build-server

The build-client and build-server stages can run in parallel, speeding up your build
process.

The prod stage pulls the minimal scratch image. It then uses the COPY --from instruc-
tion to copy the compiled client app from the build-client stage and the compiled
server app from the build-server stage. It outputs the final image which is just the
client and server apps in a tiny scratch image.

Let’s see it in action.

Change into the multi-stage directory of the repo and verify the Dockerfile exists.

$ ls -l

total 28
-rw-rw-r-- 1 ubuntu ubuntu 368 May 21 10:09 Dockerfile
-rw-rw-r-- 1 ubuntu ubuntu 433 May 21 10:09 Dockerfile-final
-rw-rw-r-- 1 ubuntu ubuntu 305 May 21 10:09 README.md
drwxrwxr-x 4 ubuntu ubuntu 4096 May 21 10:09 cmd
-rw-rw-r-- 1 ubuntu ubuntu 1013 May 21 10:09 go.mod
-rw-rw-r-- 1 ubuntu ubuntu 5631 May 21 10:09 go.sum

Perform the build. Watch and see the build-client and build-server stages execute in
parallel. This makes large builds faster.
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$ docker build -t multi:stage .

[+] Building 18.6s (14/14) FINISHED
=> [internal] load build definition from Dockerfile 0.0s
=> => transferring dockerfile: 407B 0.0s
<Snip>
=> [build-client 1/1] RUN go build -o /bin/client ./cmd/client 15.8s
=> [build-server 1/1] RUN go build -o /bin/server ./cmd/server 14.8s
<Snip>

Run a docker images to see the new image.

$ docker images

REPO TAG IMAGE ID CREATED SIZE
multi stage 638e639de548 3 minutes ago 15MB

The final production image is only 15MB. This is a lot smaller than the 250MB base
image that was pulled to create the build. This is because the final stage of the multi-
stage build used the tiny scratch image and only added the compiled client and server
binaries.

The following docker history command shows the final production image with just
two layers – one copying in the client binary and the other copying in the server binary.
None of the previous build stages are included in this final production image.

$ docker history multi:stage
IMAGE CREATED CREATED BY SIZE
638e639de548 6 minutes ago ENTRYPOINT ["/bin/server"] 0B
<missing> 6 minutes ago COPY /bin/server /bin/ # buildkit 7.46MB
<missing> 6 minutes ago COPY /bin/client /bin/ # buildkit 7.58MB

Multi-stage builds and build targets

It’s also possible to build multiple images from a single Dockerfile.

In our example, we might want to create separate images for the client and server
binaries. We can do this by splitting the final prod stage in the Dockerfile into two stages
as follows. This is in the repo as Dockerfile-final.



109

FROM golang:1.20-alpine AS base
WORKDIR /src
COPY go.mod go.sum .
RUN go mod download
COPY . .

FROM base AS build-client
RUN go build -o /bin/client ./cmd/client

FROM base AS build-server
RUN go build -o /bin/server ./cmd/server

FROM scratch AS prod-client
COPY --from=build-client /bin/client /bin/
ENTRYPOINT [ "/bin/client" ]

FROM scratch AS prod-server
COPY --from=build-server /bin/server /bin/
ENTRYPOINT [ "/bin/server" ]

The only change is the last two build stages that used to be a single stage called prod.

We can reference these stage names in two docker build commands as follows. The
commands -f flag to reference the Dockerfile called Dockerfile-final that has the two
separate prod stages.

$ docker build -t multi:client --target prod-client -f Dockerfile-final .
<Snip>

$ docker build -t multi:server --target prod-server -f Dockerfile-final .
<Snip>

Check the builds and images sizes.

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
multi client 0d318210282f 23 minutes ago 7.58MB
multi server f1dbe58b5dbe 39 minutes ago 7.46MB
multi stage 638e639de548 23 minutes ago 15MB

All three images are present. The client and server images are each about half the
size of the stage image. This is because the stage image contains the client and server
binaries.

Multi-platform builds

The docker build command lets you build images for multiple different platforms with
a single command. As a quick example, I build all of the images for this book on myM1
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Mac with an ARM chip. However, I use multi-platform builds to build images for other
platforms such as AMD64. This way, you can use the images in the book whether you’re
on ARM or AMD (x64).

You’ll need to use the docker buildx command to perform multi-platform builds. For-
tunately it ships with Docker Desktop and a lot of modern Docker engine installations.

The following steps will configure docker buildx and walk you through a multi-
platform build. They have been tested on Docker Desktop on an M1Mac.

Check you have Buildx installed.

$ docker buildx version
github.com/docker/buildx v0.10.4 c513d34

Create a builder called docker that uses the docker-container endpoint.

$ docker buildx create --driver=docker-container --name=container

Run the following command from the web-fe directory of the book’s GitHub repo. The
command builds images for the following three platforms and exports them directly to
Docker Hub:

• linux/amd64

• linux/arm64

• linux/arm/v7

Be sure to substitute your Docker ID as the command pushes directly to Docker Hub
and will fail if you try and push to my repositories.

$ docker buildx build --builder=container \
--platform=linux/amd64,linux/arm64,linux/arm/v7 \
-t nigelpoulton/ddd-book:ch8.1 --push .

[+] Building 79.3s (24/24) FINISHED
<Snip>
=> CACHED [linux/amd64 2/5] RUN apk add --update nodejs npm curl 0.0s
=> CACHED [linux/arm64 2/5] RUN apk add --update nodejs npm curl 0.0s
=> CACHED [linux/arm/v7 2/5] RUN apk add --update nodejs npm curl 0.0s
=> [linux/amd64 3/5] COPY . /src 0.0s
=> [linux/arm/v7 3/5] COPY . /src 0.0s
=> [linux/arm64 3/5] COPY . /src 0.0s
<Snip>
=> => pushing layers 31.5s
=> => pushing manifest for docker.io/nigelpoulton/ddd-book:web0.2@sha256:8fc61... 3.6s
=> [auth] nigelpoulton/ddd-book:pull,push token for registry-1.docker.io 0.0s
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The output is snipped, but notice the two important things. All instructions from the
Dockerfile are executed three times – once for each of the three target platforms. The
last three lines show the image layers being pushed to Docker Hub.

Figure 8.10 shows how the three images for the three architectures appear on Docker
Hub.

Figure 8.10 - Multi-platform image

A few best practices

Let’s list a few best practices before closing out the chapter. This list is not intended to
be exhaustive.

Leverage the build cache

The builder used by Docker uses a cache to speed-up the build process. The best way to
see the impact of the cache is to build a new image on a clean Docker host, then repeat
the same build immediately after. The first build will pull images and take time building
layers. The second build will complete almost instantaneously. This is because the layers
and other artefacts from the first build are cached and leveraged by later builds.

As we know, the docker build process iterates through a Dockerfile one-line-at-a-time
starting from the top. For each instruction, Docker looks to see if it already has an image
layer for that instruction in its cache. If it does, this is a cache hit and it uses that layer. If
it doesn’t, this is a cache miss and it builds a new layer from the instruction. Getting cache
hits can significantly speed up the build process.

Let’s look a little closer.

We’ll use the following Dockerfile as an example:
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FROM alpine
RUN apk add --update nodejs nodejs-npm
COPY . /src
WORKDIR /src
RUN npm install
EXPOSE 8080
ENTRYPOINT ["node", "./app.js"]

The first instruction tells Docker to use the alpine:latest image as its base image. If
this image already exists on the host, the builder will move on to the next instruction. If
the image doesn’t exist, it gets pulled from Docker Hub.

The next instruction (RUN apk...) runs a command to update package lists and install
nodejs and nodejs-npm. Before performing the instruction, Docker checks the build
cache for a layer that was built from the same base image using the same instruction
it’s being asked to execute. In this case, it’s looking for a layer that was built directly on
top of alpine:latest by executing the RUN apk add --update nodejs nodejs-npm
instruction.

If it finds a layer, it links to that layer and continues the build with the cache intact. If it
does not find a layer, it invalidates the cache and builds the layer. This operation of inval-
idating the cache invalidates it for the remainder of the build. This means all subsequent
Dockerfile instructions are completed in full without attempting to reference the build
cache.

Let’s assume that Docker already had a layer for this instruction so we had a cache hit.
And let’s assume the ID of that layer was AAA.

The next instruction copies some code into the image (COPY . /src). The previous
instruction resulted in a cache hit, meaning Docker can check if it has a cached layer that
was built from the AAA layer with the COPY . /src command. If it does, it links to the
layer and proceeds to the next instruction. If it doesn’t, it builds the layer and invalidates
the cache for the rest of the build.

This process continues for the rest of the Dockerfile.

It’s important to understand a few more things.

Firstly, as soon as any instruction results in a cache-miss (no existing layer was found for
that instruction), the cache is invalidated and no longer checked for the rest of the build.
This has an important impact on how you write your Dockerfiles. For example, you
should try and write them in a way that places instructions that are likely to invalidate
the cache towards the end of the Dockerfile. This means that a cache-miss will not occur
until later stages of the build — allowing the build to benefit as much as possible from
the cache.

You can force the build process to ignore the entire cache by passing the --no-cache
flag to the docker build command.
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It’s also important to understand that the COPY and ADD instructions include steps to
ensure the content being copied into the image hasn’t changed since the last build. For
example, it’s possible that the COPY . /src instruction in the Dockerfile hasn’t changed
since the previous build, but… the contents of the directory being copied into the image
have changed!

To protect against this, Docker performs a checksum against each file being copied. If
the checksums don’t match, the cache is invalidated and a new layer is built.

Squash the image

Squashing an image isn’t really a best practice as it has pros and cons.

At a high level, squashing an image follows the normal build process but adds an
additional step that squashes everything into a single layer. It can reduce the size of
images but doesn’t allow any layer sharing with other images.

Just add the --squash flag to the docker build command if you want to create a
squashed image.

Figure 8.11 shows some of the inefficiencies that come with squashed images. Both
images are exactly the same except for the fact that one is squashed and the other is
not. The non-squashed image shares layers with other images on the host (saving disk
space) but the squashed image does not. The squashed image will also need to send every
byte to Docker Hub on a docker push command, whereas the non-squashed image only
needs to send unique layers.

Figure 8.11 - Squashed images vs non-squashed images
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Use no-install-recommends

If you’re building Linux images and using the apt package manager, you should use
the no-install-recommends flag with apt-get install commands. This makes
sure that apt only installs main dependencies (packages in the Depends field) and not
recommended or suggested packages. This can greatly reduce the number of unwanted
packages that are downloaded into your images.

Containerizing an app - The commands

• docker build is the command that reads a Dockerfile and containerizes an
application. The -t flag tags the image, and the -f flag lets you specify the name
and location of the Dockerfile. With the -f flag, you can use a Dockerfile with
an arbitrary name and in an arbitrary location. The build context is where your
application files exist and can be a directory on your local Docker host or a remote
Git repo.

• The Dockerfile FROM instruction specifies the base image for the new image you’re
building. It’s usually the first instruction in a Dockerfile and a best-practice is to
use images from official repos on this line. FROM is also used to distinguish a new
build stage in multi-stage builds.

• The Dockerfile RUN instruction lets you to run commands inside the image during
a build. It’s commonly used to update packages and install dependencies. Each RUN
instruction adds a new layer to the overall image.

• The Dockerfile COPY instruction adds files into the image as a new layer. It’s
common to use it to copy your application code into an image.

• The Dockerfile EXPOSE instruction documents the network port an application
uses.

• The Dockerfile ENTRYPOINT instruction sets the default application to run when
the image is started as a container.

• Some other Dockerfile instructions include LABEL, ENV, ONBUILD, HEALTHCHECK,
CMD and more.

Chapter summary

This chapter taught you how to containerize an application.

We pulled some application code from a remote Git repo. The repo also included a file
called Dockerfile containing instructions telling Docker how to build the application
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into an image. We learned the basics of how Dockerfiles work and used them to build
new images.

We saw how multi-stage builds are a great way to build smaller safer images for
production environments.

We also learned that the Dockerfile is a great tool for documenting an app. As such, it
can speed-up the on-boarding of new developers and bridge the gap between developers
and operations staff. With this in mind, treat it like code and check it in and out of a
source control system.

Although the examples cited were Linux-based apps, the process for containerizing
Windows apps is the same: Start with your app code, create a Dockerfile describing the
app, build the image with docker build.
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In this chapter, we’ll look at how to deploy multi-container applications using Docker
Compose. We usually shorten it to just Compose.

We’ll split this chapter into the usual three parts:

• The TLDR

• The deep dive

• The commands

Deploying apps with Compose - The TLDR

Modern cloud-native apps are made of multiple smaller services that interact to form a
useful app. We call this the microservices pattern.

A microservices app might have the following seven independent services that work
together to form a useful application:

• Web front-end

• Ordering

• Catalog

• Back-end datastore

• Logging

• Authentication

• Authorization

Deploying and managing lots of small microservices like these can be hard. This is
where Compose comes in to play.

Instead of gluing microservices together with scripts and long docker commands,
Compose lets you describe everything in a declarative configuration file. You can use
this file to deploy it and manage it.

Once the app is deployed, you can manage its entire lifecycle with a simple set of com-
mands. You can even store and manage the configuration file in a version control
system.

That’s the basics. Let’s dig deeper.
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Deploying apps with Compose - The Deep Dive

We’ll divide the Deep Dive section as follows:

• Compose background
• Installing Compose
• Compose files
• Deploying apps with Compose
• Managing apps with Compose

Compose background

When Docker was new, a company called Orchard built a tool called Fig that made
it really easy to manage multi-container apps. It was a Python tool that sat on top of
Docker and let you define entire multi-container microservices apps in a single YAML
file. You could even use Fig to deploy and manage the entire lifecycle of the app with the
fig command-line tool.

Behind the scenes, Fig would read the YAML file and call the appropriate Docker
commands to deploy and manage it.

In fact, it was so good that Docker, Inc. acquired Orchard and re-branded Fig as Docker
Compose. The command-line tool was renamed from fig to docker-compose and the
more recently it was folded into the docker CLI with its own sub-command. You can
now run simple docker compose commands on the CLI.

There is also a Compose Specification12 aimed at creating an open standard for defining
multi-container microservices apps. The specification is community-led and kept
separate from the Docker implementation. This helps maintain better governance and
clearer lines of demarcation. However, we should expect Docker to implement the full
spec in the Docker engine.

The spec itself is a great document to learn the details.

Time to see Compose in action.

Installing Compose

Compose now ships with the Docker engine and you no longer need to install it as a
separate program.

Test it works with the following command. Be sure to use the docker compose com-
mand and not docker-compose.

12https://github.com/compose-spec/compose-spec

https://github.com/compose-spec/compose-spec
https://github.com/compose-spec/compose-spec
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$ docker compose version
Docker Compose version v2.17.3

Compose files

Compose uses YAML files to define microservices applications.

The default name for a Compose YAML file is compose.yaml. However, it also accepts
compose.yml and you can use the -f flag to specify custom filenames.

The following example shows a very simple Compose file that defines a small Flask app
with two microservices (web-fe and redis). The app is a simple web server that counts
the number of visits to a web page and stores the value in a Redis cache. We’ll call the
app multi-container and use it as the example application for the rest of the chapter.

The file is in the multi-container folder of the book’s GitHub repository.

services:
web-fe:
build: .
command: python app.py
ports:

- target: 8080
published: 5001

networks:
- counter-net

volumes:
- type: volume
source: counter-vol
target: /app

redis:
image: "redis:alpine"
networks:

counter-net:

networks:
counter-net:

volumes:
counter-vol:

We’ll skip through the basics of the file before taking a closer look.

The first thing to note is that the file has 3 top-level keys:

• services

• networks
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• volumes

Other top-level keys exist, such as secrets and configs, but we’re not looking at those.

The top-level services key is where we define application microservices. This example
defines two: a web front-end called web-fe, and an in-memory cache called redis.
Compose will deploy each of these microservices to its own container.

The top-level networks key tells Docker to create new networks. By default, modern
versions of Compose create overlay networks that span multiple hosts. However, you
can use the driver property to specify different network types.

The following YAML can be used in your Compose file to create a new overlay network
called over-net that allows standalone containers to connect to it (attachable).

networks:
over-net:
driver: overlay
attachable: true

The top-level volumes key is where you tell Docker to create new volumes.

Our specific Compose file

The example Compose file defines two services, a network called counter-net, and a
volume called counter-vol. It’s shown again here:

services:
web-fe:
build: .
command: python app.py
ports:

- target: 8080
published: 5001

networks:
- counter-net

volumes:
- type: volume
source: counter-vol
target: /app

redis:
image: "redis:alpine"
networks:

counter-net:
networks:
counter-net:

volumes:
counter-vol:
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Most of the detail is in the services section, so let’s take a closer look at that.

The services section has two second-level keys:

• web-fe

• redis

Each of these defines a microservice. It’s important to know that Compose will deploy
each of these as its own container and will use the name of the keys in the container
names. In our example, we’ve defined two keys: web-fe and redis. This means Com-
pose will deploy two containers, one will have web-fe in its name and the other will
have redis.

Within the definition of the web-fe service, we give Docker the following instructions:

• build: . This tells Docker to build a new image using the Dockerfile in the
current directory (.). The newly built image will be used in a later step to create
the container for this service.

• command: python app.py This tells Docker to run a Python app called app.py
in every container for this service. The app.py file must exist in the image, and
the image must have Python installed. The Dockerfile takes care of both of these
requirements.

• ports: The example in our Compose file tells Docker to map port 8080 inside the
container (target) to port 5001 on the host (published). This means traffic hitting
the Docker host on port 5001 will be directed to port 8080 on the container. The
app inside the container listens on port 8080.

• networks: Tells Docker which network to attach the service’s containers to. The
network should already exist or be defined in the networks top-level key. If it’s
an overlay network, it will need to have the attachable flag so that standalone
containers can be attached to it (Compose deploys standalone containers instead
of Docker Services).

• volumes: Tells Docker to mount the counter-vol volume (source:) to /app
(target:) inside the container. The counter-vol volume needs to already exist
or be defined in the volumes top-level key in the file.

In summary, Compose will instruct Docker to deploy a single standalone container for
the web-femicroservice. It will be based on an image built from a Dockerfile in the
same directory as the Compose file. This image will be started as a container and run
app.py as its main app. It will attach to the counter-net network, expose itself on port
5001 on the host, and mount a volume to /app.
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Note:We don’t actually need the command: python app.py option in the
Compose file as it’s already defined in the Dockerfile. We show it here so you
know how it works. You can also use Compose to override instructions set in
Dockerfiles.

The definition of the redis service is simpler:

• image: redis:alpine This tells Docker to start a standalone container called
redis based on the redis:alpine image. This image will be pulled from Docker
Hub.

• networks: The redis container will also be attached to the counter-net network.

As both services will be deployed onto the same counter-net network, they’ll be able to
resolve each other by name. This is important as the application is configured to connect
to the Redis service by name.

Now that we understand how the Compose file works, let’s deploy it!

Deploying apps with Compose

In this section, we’ll deploy the app defined in the Compose file from the previous
section. To do this, you’ll need a local copy of the book’s GitHub repo and run all
commands from the multi-container folder.

If you haven’t already done so, clone the Git repo locally. You’ll need Git installed to do
this.

$ git clone https://github.com/nigelpoulton/ddd-book.git

Cloning into 'ddd-book'...
remote: Enumerating objects: 67, done.
remote: Counting objects: 100% (67/67), done.
remote: Compressing objects: 100% (47/47), done.
remote: Total 67 (delta 17), reused 63 (delta 16), pack-reused 0
Receiving objects: 100% (67/67), 173.61 KiB | 1.83 MiB/s, done.
Resolving deltas: 100% (17/17), done.

Cloning the repo will create a new directory called ddd-book containing all of the files
used in the book.

Change directory to the ddd-book/multi-container directory and use this as your
build context for the remainder of the chapter. Compose will also use the name of the
directory (multi-container) as the project name. We’ll see this later, but Compose will
prepend all resource names with multi-container_.
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$ cd ddd-book/multi-container/
$ ls -l
total 20
-rw-rw-r-- 1 ubuntu ubuntu 288 May 21 15:53 Dockerfile
-rw-rw-r-- 1 ubuntu ubuntu 332 May 21 15:53 README.md
drwxrwxr-x 4 ubuntu ubuntu 4096 May 21 15:53 app
-rw-rw-r-- 1 ubuntu ubuntu 355 May 21 15:53 compose.yaml
-rw-rw-r-- 1 ubuntu ubuntu 18 May 21 15:53 requirements.txt

Let’s quickly describe each file:

• compose.yaml is the Docker Compose file that describes the app and how
Compose should build and deploy it

• app is a folder and contains the application code and views

• Dockerfile describes how to build the image for the web-fe service

• requirements.txt lists the application dependencies

Feel free to inspect the contents of each file.

The app/app.py file is the core of the application, however, compose.yaml is the glue
that sticks all the microservices together.

Let’s use Compose to bring the app up. You must run all of the following commands
from within the multi-container directory of the repo you just cloned from GitHub.

$ docker compose up &

[+] Running 7/7
- redis 6 layers [||||||] 0B/0B Pulled 5.2s
- 08409d417260 Already exists 0.0s
- 35afda5186ef Pull complete 0.5s
- ebab1fe9c8cc Pull complete 1.5s
- e438114652e6 Pull complete 3.1s
- 80fd0bfc19ad Pull complete 3.1s
- ca04d454c47d Pull complete 1.1s
[+] Building 10.3s (9/9) FINISHED
<Snip>
[+] Running 4/4

- Network multi-container_counter-net Created 0.1s
- Volume "multi-container_counter-vol" Created 0.0s
- Container multi-container-redis-1 Started 0.6s
- Container multi-container-web-fe-1 Started 0.5s

It’ll take a few seconds for the app to come up and the output can be verbose. You may
also have to hit the Return key when the deployment completes.
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We’ll step through what happened in a second, but first let’s talk about the docker
compose command.

docker compose up is the most common way to bring up a Compose app. It builds
or pulls all required images, creates all required networks and volumes, and starts all
required containers.

We didn’t specify the name or location of the Compose file as it’s called compose.yaml
and in the local directory. However, if it has a different name or location we would use
the -f flag. The following example will deploy an application from a Compose file called
prod-equus-bass.yml

$ docker compose -f prod-equus-bass.yml up &

Normally you’ll use the --detach flag to bring the app up in the background as shown
next. However, we brought it up in the foreground and used the & to give us the terminal
window back. This forces Compose to output all messages to the terminal window
which we’ll use later.

Now that the app is built and running, we can use normal docker commands to view
the images, containers, networks, and volumes that Compose created — remember,
Compose is building and working with normal Docker constructs behind the scenes.

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
multi-container-web-fe latest ade6252c30cc 7 minutes ago 76.3MB
redis alpine b64252cb5430 9 days ago 30.7MB

The multi-container-web-fe:latest image was created by the build: . instruction
in the compose.yaml file. This instruction caused Docker to build a new image using the
Dockerfile in the same directory. It contains the web-fe microservice and was built from
the python:alpine image. See the contents of the Dockerfile for more information:

FROM python:alpine << Base image
COPY . /app << Copy app into image
WORKDIR /app << Set working directory
RUN pip install -r requirements.txt << Install requirements
ENTRYPOINT ["python", "app.py"] << Set the default app

I’ve added comments to the end of each line to help explain.

Notice how Compose has named the newly-built image as a combination of the project
name (multi-container) and the resource name as specified in the Compose file (web-
fe). The project name is the name of the directory with the Compose file in it. All
resources created by Compose will follow this naming convention.



125

The redis:alpine image was pulled from Docker Hub by the image: "redis:alpine"
instruction in the .Services.redis section of the Compose file.

The following container listing shows two running containers. These following the
same naming convention and each one has a numeric suffix that indicates the instance
number — this is because Compose allows for scaling up and down.

$ docker ps
ID COMMAND STATUS PORTS NAMES
61.. "python app/app.py" Up 5 mins 0.0.0.0:5001->8080/tcp.. multi-container-web-fe-1
80.. "docker-entrypoint.." Up 5 mins 6379/tcp multi-container-redis-1

The multi-container-web-fe-1 container is running the application’s web front end.
This is running the app.py code and is mapped to port 5001 on all interfaces on the
Docker host. We’ll connect to this in a later step.

The following network and volume listings show the multi-container_counter-net
network and multi-container_counter-vol volume.

$ docker network ls
NETWORK ID NAME DRIVER SCOPE
46100cae7441 multi-container_counter-net bridge local
<Snip>

$ docker volume ls
DRIVER VOLUME NAME
local multi-container_counter-vol
<Snip>

With the application successfully deployed, you can point a web browser at your Docker
host on port 5001 and see the application in all its glory.
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The image shows I connected to a Docker host with an IP address of 192.168.64.28 on
port 5001. If you’re on Docker Desktop or another local environment you might be able
to connect on localhost:5001.

Hitting your browser’s refresh button will cause the counter on the web page to
increment. Have a look at the app (app/app.py) to see how the counter data is stored
in the Redis back-end.

As we brought the application up in the foreground, we can see the HTTP 200 response
codes being logged in the terminal window for each refresh. These indicate successful
requests, and you’ll see one for each time you load the web page.

multi-container-web-fe-1 | 192.168.64.1 - - [21/May/2023 15:38:40] "GET / HTTP/1.1" 200 -
multi-container-web-fe-1 | 192.168.64.1 - - [21/May/2023 15:38:41] "GET / HTTP/1.1" 200 -

Congratulations. You’ve successfully deployed a multi-container application using
Docker Compose!

Managing apps with Compose

In this section, you’ll see how to stop, restart, delete, and get the status of Compose
applications. You’ll also see how the volume can be used to directly inject updates to the
app.

As the application is already up, let’s see how to bring it down. To do this, replace the up
sub-command with down.

$ docker compose down
[+] Running 3/3
- Container multi-container-web-fe-1 Removed 0.3s
- Container multi-container-redis-1 Removed 0.2s
- Network multi-container_counter-net Removed 0.3

As the app was started in the foreground we’ll get verbose output to the terminal. This
can give you good insight into how things work and I recommend you analyse the
output. We don’t go through it here in the book as it can change between different
versions of Compose.

It’s clear to see that the two containers (microservices) and the network have been
removed.

However, volumes are not deleted by default. This is because volumes are intended
to be long-term persistent data stores and their lifecycles are entirely decoupled from
application lifecycles. Running a docker volume ls will prove the volume is still
present on the system. If you’d written any data to it, the data would still exist. Adding
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the --volumes flag to the docker compose down command will delete all associated
volumes.

Any images that were built or pulled as part of the docker-compose up operation will
also remain on the system. This means future deployments of the app will be faster.
Adding the --rmi all flag to the docker compose down command will delete all images
built or pulled when starting the app.

Let’s look at a few other docker compose sub-commands.

Use the following command to bring the app up again, but this time in the background.

$ docker compose up --detach
<Snip>

See how the app started much faster this time — the counter-vol volume already exists,
and all images already exist on the Docker host.

Show the current state of the app with the docker compose ps command.

$ docker compose ps
NAME COMMAND SERVICE STATUS PORTS
multi-container-redis-1 "docker-entrypoint.." redis Up 28 sec 6379/tcp
multi-container-web-fe-1 "python app/app.py" web-fe Up 28 sec 0.0.0.0:5001->8080

You can see both containers, the commands they are running, their current state, and the
network ports they’re listening on.

Use docker compose top to list the processes running inside of each service (container).

$ docker compose top
multi-container-redis-1
UID PID PPID ... CMD
lxd 22312 22292 redis-server *:6379

multi-container-web-fe-1
UID PID PPID ... CMD
root 22346 22326 0 python app/app.py python app.py
root 22415 22346 0 /usr/local/bin/python app/app.py python app.py

The PID numbers returned are the PID numbers as seen from the Docker host (not from
within the containers).

Use the docker compose stop command to stop the app without deleting its resources.
Then show the status of the app with docker compose ps.
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$ docker compose stop
[+] Running 2/2
- Container multi-container-redis-1 Stopped 0.4s
- Container multi-container-web-fe-1 Stopped 0.5

$ docker compose ps
NAME COMMAND SERVICE STATUS PORTS

Previous versions of Compose used to list the containers in the stopped state. Verify that
the containers for the two Compose microservices still exist on the system and are in
the stopped state.

$ docker ps -a
CONTAINER ID COMMAND STATUS NAMES
f1442d484ccd "python app/app.py" Exited (0)... multi-container-web-fe-1
541efbd7185d "docker-entrypoint" Exited (0)... multi-container-redis-1

You can delete a stopped Compose app with docker compose rm. This will delete
the containers and networks but not the volumes or images. Nor will it delete the
application source code in your project’s build context directory (app.py, Dockerfile,
requirements.txt, and compose.yaml).

With the app in the stopped state, restart it with the docker compose restart com-
mand.

$ docker compose restart
[+] Running 2/2
- Container multi-container-redis-1 Started 0.4s
- Container multi-container-web-fe-1 Started 0.5s

Verify the operation app is back up.

$ docker compose ls
NAME STATUS CONFIG FILES
multi-container running(2) /home/ubuntu/ddd-book/multi-container/compose.yaml

Run the following command to stop and delete the app with a single command. It will
also delete any volumes and images used to start the app.
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$ docker-compose down --volumes --rmi all
Stopping multi-container-web-fe-1 ... done
Stopping multi-container-redis-1 ... done
Removing multi-container-web-fe-1 ... done
Removing multi-container-redis-1 ... done
Removing network multi-container_counter-net
Removing volume multi-container_counter-vol
Removing image multi-container_web-fe
Removing image redis:alpine

Using volumes to insert data

Let’s deploy the app one last time and see a little more about how the volume works.

$ docker compose up --detach
<Snip>

If you look in the Compose file, you’ll see it defines a volume called counter-vol and
mounts it in to the web-fe container at /app.

volumes:
counter-vol:

services:
web-fe:
volumes:

- type: volume
source: counter-vol
target: /app

The first time we deployed the app, Compose checked to see if a volume called counter-
vol already existed. It didn’t, so Compose created it. You can see it with the docker
volume ls command, and you can get more detailed information with docker volume
inspect multi-container_counter-vol.

$ docker volume ls
RIVER VOLUME NAME
local multi-container_counter-vol

$ docker volume inspect multi-container_counter-vol
[

{
"CreatedAt": "2023-05-21T19:49:25+01:00",
"Driver": "local",
"Labels": {

"com.docker.compose.project": "multi-container",
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"com.docker.compose.version": "2.17.3",
"com.docker.compose.volume": "counter-vol"

},
"Mountpoint": "/var/lib/docker/volumes/multi-container_counter-vol/_data",
"Name": "multi-container_counter-vol",
"Options": null,
"Scope": "local"

}
]

It’s also worth knowing that Compose builds networks and volumes before deploying
services. This makes sense, as networks and volumes are lower-level infrastructure
objects that are consumed by services (containers).

If we take another look at the service definition for web-fe, we’ll see that it’s mounting
the counter-app volume into the container at /app. We can also see from the Dockerfile
that /app is where the app is installed and executed from. This means the app code is
running from a Docker volume. See Figure 9.2.

Figure 9.2

This means we can make changes to files in the volume, from the outside of the con-
tainer, and have them reflected immediately in the app. Let’s see how that works.

The next steps will walk you through the following process.

• Update the contents of app/templates/index.html in the project’s build context

• Copy the updated index.html to the container’s volume (this resides on the
Docker host’s filesystem)

• Refresh the web page and see the updates
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Note: This won’t work if you are using Docker Desktop on Mac or Windows.
This is because Docker Desktop runs Docker inside of a lightweight VM on
these platforms and all volumes exist inside the VM.

Use your favourite text editor to edit the index.html. Be sure to run the command from
the multi-container directory.

$ vim app/templates/index.html

Change text on line 16 to the following and save your changes.

<h2>Sunderland til I die</h2>

Now that you’ve updated the app, you need to copy it into the volume on the Docker
host. Each Docker volume exists at a location within the Docker host’s filesystem. Use
the following docker inspect command to find where the volume is exposed on the
Docker host.

$ docker inspect multi-container_counter-vol | grep Mount

"Mountpoint": "/var/lib/docker/volumes/multi-container_counter-vol/_data",

Copy the updated index.html file to the appropriate subdirectory below the directory
returned by the previous command (remember that this will not work on Docker
Desktop). As soon as you do this, the updated file will appear in the container.

You may have to prefix the command with sudo and you should run it on one line and
not split it over multiple lines with the \. It’s only split over multiple lines in the book to
avoid line wrapping.

$ cp ./counter-app/app.py \
var/lib/docker/volumes/multi-container_counter-vol/_data/app/templates/index.html

The updated app file is now on the container. Connect to the app to see your change.
You can do this by pointing your web browser to the IP of your Docker host on port
5001.

Figure 9.3 shows the updated app.
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You wouldn’t do update operations like this in production, but it demonstrates how
volumes work.

Congratulations. You’ve deployed and managed a multi-container microservices app
using Docker Compose.

Before reminding ourselves of the commands we learned, it’s important to understand
that this was a very simple example. Docker Compose is capable of deploying and
managing far more complex applications.

Deploying apps with Compose - The commands

• docker compose up is the command to deploy a Compose app. It creates all
images, containers, networks and volumes needed by the app. It expects the
Compose file to be called compose.yaml but you can specify a custom filename
with the -f flag. It’s common to start the app in the background with the --detach
flag.

• docker compose stop will stop all containers in a Compose app without delet-
ing them from the system. They can be easily restarted with docker compose
restart.

• docker compose rm will delete a stopped Compose app. It will delete containers
and networks, but it won’t delete volumes and images by default.

• docker compose restart will restart a Compose app that has been stopped
with docker compose stop. If you make changes to your Compose app while it’s
stopped, these changes will not appear in the restarted app. You need to re-deploy
the app to get the changes.

• docker compose ps lists each container in the Compose app. It shows current
state, the command running inside each container, and network ports.
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• docker compose down will stop and delete a running Compose app. It deletes
containers and networks, but not volumes and images.

Chapter Summary

In this chapter, we learned how to deploy and manage multi-container applications
using Docker Compose.

Compose is now an integrated part of the Docker engine and has its own docker sub-
command. It lets you define multi-container apps in declarative configuration file and
deploy them with a single command.

Compose files can be YAML or JSON, and they define all of the containers, networks,
volumes, and secrets an application requires. You then feed the file to the docker
compose command line and Compose uses Docker to deploy it.

Once the Compose app is deployed, you can manage its entire lifecycle using the many
docker compose sub-commands.

You also saw how volumes have a separate lifecycle to the rest of the app, as well as how
you can use them to inject changes directly into running containers.

Docker Compose is popular with developers, and the Compose file is an excellent
source of application documentation — it defies all the services that make up the app,
the images they use, ports they expose, networks and volumes they use, and much more.
As such, it can help bridge the gap between dev and ops. You should also treat Compose
files the same way you treat code. This means, among other things, storing them in
source control repos.
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Now that we know how to install Docker, pull images, and work with containers, the
next thing we need is a way to do it all at scale. That’s where Docker Swarm comes into
play.

As usual, we’ll split this chapter into three parts:

• The TLDR

• The deep dive

• The commands

Docker Swarm - The TLDR

Docker Swarm is two things:

1. An enterprise-grade secure cluster of Docker hosts

2. An orchestrator of microservices apps

On the clustering front, Swarm groups one or more Docker nodes and lets you manage
them as a cluster. Out-of-the-box, you get an encrypted distributed cluster store,
encrypted networks, mutual TLS, secure cluster join tokens, and a PKI that makes
managing and rotating certificates a breeze. You can even non-disruptively add and
remove nodes. It’s a beautiful thing.

On the orchestration front, Swarm allows you to deploy and manage complex microser-
vices apps with ease. You can define your apps in declarative files and deploy them to the
swarm with native Docker commands. You can even perform rolling updates, rollbacks,
and scaling operations. Again, all with simple commands.

Docker Swarm is similar Kubernetes — they both orchestrate containerized appli-
cations. Kubernetes has a lot more momentum and a more active community and
ecosystem. However, Swarm is a lot easier to use and is a popular choice for many small-
to-medium businesses and application deployments. Learning Swarm is a stepping-
stone to learning Kubernetes.
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Docker Swarm - The Deep Dive

We’ll split the deep dive part of this chapter as follows:

• Swarm primer

• Build a secure Swarm cluster

• Deploying Swarm services

• Troubleshooting

• Backing up and recovering a Swarm

Swarm primer

On the clustering front, a swarm consists of one or more Docker nodes. These nodes can
be physical servers, VMs, Raspberry Pi’s, or cloud instances. The only requirement is
that they all have Docker installed and can communicate over reliable networks.

Terminology:When referring to Docker Swarm we’ll write Swarm with
an uppercase “S”. When referring to a swarm (cluster of nodes) we’ll use a
lowercase “s”.

Nodes are configured as managers or workers.Managers look after the control plane,
meaning things like the state of the cluster and dispatching tasks to workers.Workers
accept tasks from managers and execute them.

The configuration and state of the swarm is held in a distributed database replicated on
all managers. It’s kept in-memory and is extremely up-to-date. However, the best thing
is that it requires zero configuration — it’s installed as part of the swarm and just takes
care of itself.

TLS is so tightly integrated that it’s impossible to build a swarm without it. In today’s
security conscious world, things like this deserve all the plaudits they get. Swarm uses
TLS to encrypt communications, authenticate nodes, and authorize roles. Automatic key
rotation is also thrown in as the icing on the cake. And the best part… it all happens so
smoothly that you don’t even know it’s there.

On the orchestration front, the atomic unit of scheduling on a swarm is the service. This
is a high-level construct that wraps some advanced features around containers. These
features include scaling, rolling updates, and simple rollbacks. It’s useful to think of a
service as an enhanced container.

A high-level view of a swarm is shown in Figure 10.1.
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Figure 10.1 High-level swarm

That’s enough of a primer. Let’s get our hands dirty with some examples.

Build a secure swarm cluster

In this section, we’ll build a secure swarm cluster with three manager nodes and three
worker nodes as shown in Figure 10.2.

Figure 10.2

Pre-reqs

If you plan on following along, I recommend using Multipass to create multiple Docker
VMs on your laptop or local machine. Multipass is free and easy to use, and all VMs will
be able to communicate. Just install Multipass and then use the following commands to
create VMs and log on to them:
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• Create new Docker VMs with: multipass launch docker --name <name>
• List Multipass VMs and their IPs with: multipass ls
• Log on to a Multipass VM with: multipass shell <name>
• Log out of a Multipass VM with: exit

I’ve created 6 VMs and named them according to Figure 10.2.

If you can’t use Multipass, I recommend creating multiple nodes on Play with Docker at
https://labs.play-with-docker.com. It’s free to use and you get a 4-hour playground.

However, any Docker environment should work. The only requirements are that
each node has Docker installed and can communicate over a reliable network. It’s also
beneficial if name resolution is configured — it makes it easier to identify nodes in
command outputs and helps when troubleshooting.

If you plan to follow along on Docker Desktop, be warned that it only supports a single
Docker node. This is OK but isn’t the best for some of the later examples.

If you think you hit networking issues, be sure the following ports are open between all
swarm nodes:

• 2377/tcp: for secure client-to-swarm communication
• 7946/tcp and udp: for control plane gossip
• 4789/udp: for VXLAN-based overlay networks

Initializing a new swarm

The process of building a swarm is called initializing a swarm, and the high-level process
is this: Initialize the first manager > Join additional managers > Join workers > Done.

Docker nodes that are not part of a swarm are said to be in single-engine mode. Once
they’re added to a swarm they’re automatically switched into swarm mode.

Running docker swarm init on a Docker host in single-engine mode will switch that
node into swarm mode, create a new swarm, and make the node the first manager of the
swarm.

Additional nodes can then be joined as either workers or managers, and the join process
automatically flips them into swarm mode.

The following steps will initialize a new swarm frommgr1. It will then joinwrk1,wrk2,
andwrk3 as worker nodes — automatically putting them into swarm mode as part of the
process. Finally, it will addmgr2 andmgr3 as additional managers and switch them into
swarm mode. At the end of the procedure, all 6 nodes will be in swarm mode and operating
as part of the same swarm.

This example will use the names and IP addresses of the nodes shown in Figure 10.2.
Yours may be different.
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1. Log on tomgr1 and initialize a new swarm. This command uses the IP address
from Figure 10.2. You should use an appropriate private IP on your Docker host. If
you’re using Multipass this will usually be the VM’s 192 address.

$ docker swarm init \
--advertise-addr 10.0.0.1:2377 \
--listen-addr 10.0.0.1:2377

Swarm initialized: current node (d21lyz...c79qzkx) is now a manager.
<Snip>

The command can be broken down as follows:

• docker swarm init: This tells Docker to initialize a new swarm and make
this node the first manager. It also puts the node into swarm mode.

• --advertise-addr: This is the swarm API endpoint that will be advertised to
other managers and workers. It will usually be one of the node’s IP addresses
but can be an external load-balancer address. It’s an optional flag unless you
need to specify a load-balancer or specific IP on a node with multiple IPs.

• --listen-addr: This is the IP address that the node will accept swarm traffic
on. If you don’t set it, it defaults to the same value as --advertise-addr. If --
advertise-addr is a load-balancer, youmust use --listen-addr to specify a
local IP or interface for swarm traffic.

For production environments I recommend you be specific and always use both
flags. It’s not so important for lab environments like ours.

The default port that Swarm mode operates on is 2377. This is customizable, but
it’s convention to use 2377/tcp for secured (HTTPS) client-to-swarm connections.

2. List the nodes in the swarm.

$ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
d21...qzkx * mgr1 Ready Active Leader

mgr1 is currently the only node in the swarm and is listed as the Leader. We’ll
come back to this in a second.

3. Frommgr1 run the docker swarm join-token command to extract the com-
mands and tokens required to add new workers and managers to the swarm.
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$ docker swarm join-token worker
To add a manager to this swarm, run the following command:

docker swarm join \
--token SWMTKN-1-0uahebax...c87tu8dx2c \
10.0.0.1:2377

$ docker swarm join-token manager
To add a manager to this swarm, run the following command:

docker swarm join \
--token SWMTKN-1-0uahebax...ue4hv6ps3p \
10.0.0.1:2377

Notice that the commands to join workers and managers are identical apart from
the join tokens (SWMTKN...). This means that whether a node joins as a worker or
a manager depends entirely on which token you use when joining it. You should
keep your join tokens in a safe place as they’re the only thing required to join a
node to a swarm!

4. Log on towrk1 and join it to the swarm using the docker swarm join command
with the worker join token.

$ docker swarm join \
--token SWMTKN-1-0uahebax...c87tu8dx2c \
10.0.0.1:2377 \
--advertise-addr 10.0.0.4:2377 \
--listen-addr 10.0.0.4:2377

This node joined a swarm as a worker.

The --advertise-addr, and --listen-addr flags are optional. I’ve added them
as I consider it best practice to be as specific as possible when it comes to network
configuration in production environments. You probably don’t need them just for
a lab.

5. Repeat the previous step onwrk2 andwrk3 so that they join the swarm as
workers. If you’re specifying the --advertise-addr and --listen-addr flags,
make sure you usewrk2 andwrk3’s respective IP addresses.

6. Log on tomgr2 and join it to the swarm as a manager using the docker swarm
join command with the manager join token.
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$ docker swarm join \
--token SWMTKN-1-0uahebax...ue4hv6ps3p \
10.0.0.1:2377 \
--advertise-addr 10.0.0.2:2377 \
--listen-addr 10.0.0.2:2377

This node joined a swarm as a manager.

7. Repeat the previous step onmgr3, remembering to usemgr3’s IP address for the
advertise-addr and --listen-addr flags.

8. List the nodes in the swarm by running docker node ls from any of the manager
nodes.

$ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
0g4rl...babl8 * mgr2 Ready Active Reachable
2xlti...l0nyp mgr3 Ready Active Reachable
8yv0b...wmr67 wrk1 Ready Active
9mzwf...e4m4n wrk3 Ready Active
d21ly...9qzkx mgr1 Ready Active Leader
e62gf...l5wt6 wrk2 Ready Active

Congratulations. You’ve created a 6-node swarm with 3 managers and 3 workers. As
part of the process, the Docker Engine on each node was automatically put into swarm
mode and the swarm was automatically secured with TLS.

If you look in the MANAGER STATUS column, you’ll see the three manager nodes are
showing as either “Reachable” or “Leader”. We’ll learn more about leaders shortly. Nodes
with nothing in the MANAGER STATUS column are workers. Also note the asterisk (*) after
the ID on the line showingmgr2. This tells you which node you’re executing commands
from. The previous command was issued frommgr2.

Note: It’s a pain to specify the --advertise-addr and --listen-addr
flags every time you join a node to the swarm. However, it can be a much
bigger pain if you get the network configuration of your swarm wrong.
Also, manually adding nodes to a swarm is unlikely to be a daily task, so it’s
worth the extra up-front effort to use the flags. It’s your choice though. In lab
environments or nodes with only a single IP you probably don’t need to use
them.

Now that you have a swarm up and running, let’s take a look at manager high availability
(HA).
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Swarmmanager high availability (HA)

So far, we’ve added three manager nodes to a swarm. Why three? And how do they work
together?

Swarm managers have native support for high availability (HA). This means one or more
can fail and the survivors will keep the swarm running.

Technically speaking, swarm implements active/passive multi-manager HA. This means
only one manager is active at any given moment. This active manager is called the
“leader”, and the leader is the only one that will ever issue updates to the swarm. So, it’s
only ever the leader that changes the config, or issues tasks to workers. If a follower
manager (passive) receives commands for the swarm, it proxies them across to the
leader.

This process is shown in Figure 10.3. Step 1 is the command coming into a manager
from a remote Docker client. Step 2 is the non-leader manager receiving the command
and proxying it to the leader. Step 3 is the leader executing the command on the swarm.

Figure 10.3

Leaders and followers is Raft terminology. This is because swarm uses an implementation
of the Raft consensus algorithm13 to maintain a consistent cluster state across multiple
highly-available managers.

On the topic of HA, the following two best practices apply:

1. Deploy an odd number of managers

2. Don’t deploy too many managers (3 or 5 is recommended)

3. Spread managers across availability zones

13https://raft.github.io/

https://raft.github.io/
https://raft.github.io/
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Having an odd number of managers reduces the chances of split-brain conditions. For
example, if we had 4 managers and the network partitioned, we could be left with two
managers on each side of the partition. This is known as a split brain — each side knows
there used to be 4 but can now only see 2. But crucially, neither side has any way of
knowing if the other two are still alive and whether it holds a majority (quorum). Apps
on a swarm cluster continue to operate during split-brain conditions, however, we’re
not able to alter the configuration or add and manage application workloads.

However, if we have 3 or 5 managers and the same network partition occurs, it is
impossible to have an equal number of managers on both sides of the partition. This
means that one knows it has a majority (quorum) and full cluster management services
remain available. The example on the right side of Figure 10.4 shows a partitioned
cluster where the left side of the split knows it has a majority of managers.

Figure 10.4

As with all consensus algorithms, more participants means more time required to
achieve consensus. It’s like deciding where to eat — it’s always quicker and easier for 3
people to make a decision than it is for 33! With this in mind, it’s a best practice to have
either 3 or 5 managers for HA. 7 might work, but it’s generally accepted that 3 or 5 is
optimal.

A final word of caution regarding manager HA. While it’s a good practice to spread your
managers across availability zones, you need to make sure the networks connecting
them are reliable, as network partitions can be difficult to troubleshoot and resolve. This
means, at the time of writing, having managers on different cloud platforms for multi-
cloud HA probably isn’t a great idea.
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Built-in Swarm security

Swarm clusters have a ton of built-in security that’s configured out-of-the-box with
sensible defaults — CA settings, join tokens, mutual TLS, encrypted cluster store,
encrypted networks, cryptographic node ID’s and more.

Locking a Swarm

Despite all of this built-in security, restarting an older manager or restoring an old
backup has the potential to compromise the cluster. Old managers re-joining might
be able to decrypt and gain access to the Raft log time-series database. They may also
pollute, or wipe-out, the current swarm configuration.

To prevent situations like these, Docker allows you to lock a swarm with the Autolock
feature. This forces restarted managers to present a key before being admitted back into
the cluster.

It’s possible to lock a swarm as part of the initialization process by passing the --
autolock flag to the docker swarm init command. However, we’ve already built a
swarm, so we’ll lock ours using the docker swarm update command.

Run the following command from a swarm manager.

$ docker swarm update --autolock=true
Swarm updated.
To unlock a swarm manager after it restarts, run the `docker swarm unlock` command and
provide the following key:

SWMKEY-1-XDeU3XC75Ku7rvGXixJ0V7evhDJGvIAvq0D8VuEAEaw

Please remember to store this key in a password manager, since without it you will not be able
to restart the manager.

Be sure to keep the unlock key in a secure place. You can always check your current
swarm unlock key with the docker swarm unlock-key command.

Restart one of your manager nodes to see if it automatically re-joins the cluster. You
may need to prefix the command with sudo.

$ service docker restart

Try and list the nodes in the swarm.
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$ docker node ls
Error response from daemon: Swarm is encrypted and needs to be unlocked before it can be used.

Although the Docker service has restarted on the manager, it hasn’t been allowed to
re-join the swarm. You can prove this even further by running a docker node ls
command on another manager node. The restarted manager will show as down and
unreachable.

Run the docker swarm unlock command to unlock the swarm for the restarted
manager. You’ll need to run this command on the restarted manager, and you’ll need
to provide the unlock key.

$ docker swarm unlock
Please enter unlock key: <enter your key>

The node will be allowed to re-join the swarm and will show as ready and reachable if
you run another docker node ls.

Locking your swarm and protecting the unlock key is recommended for production
environments.

Dedicated manager nodes

By default, manager and worker nodes can execute user applications. In production
environments it’s common to configure swarms so that only workers execute user
applications. This allows managers to focus solely on control-plane duties.

Run the following three commands from any manager to prevent all three managers
from running application containers.

$ docker node update --availability drain mgr1
$ docker node update --availability drain mgr2
$ docker node update --availability drain mgr3

You’ll see this in action in later steps when we deploy services with multiple replicas.

Now that we’ve got our swarm built and we understand the infrastructure concepts of
leaders and manager HA, let’s move on to the application side of things.

Deploying Swarm services

Everything we do in this section of the chapter gets improved on by Docker Stacks in a
later chapter. However, it’s important that you learn the concepts here so that you’re
prepared for later.
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Services let us specify most of the familiar container options such as name, port mappings,
attaching to networks, and images. But they add important cloud-native features, including
desired state and reconciliation. For example, swarm services let us define the desired state
for an application and let the swarm take care of deploying it and managing it.

Let’s look at a quick example. Assume you have an app with a web front-end. You have
an image for the web server and testing has shown that you need 5 instances to handle
normal daily traffic. You translate this requirement into a single service declaring the
image to use, and that the service should always have 5 running replicas. You issue that
to the swarm as your desired state and the swarm takes care of ensuring there are always
5 instances of the web server running.

We’ll see some of the other things that can be declared as part of a service in a minute,
but before we do that, let’s see one way to create what we just described.

You can create services in one of two ways:

1. Imperatively on the command line with docker service create
2. Declaratively with a stack file

We’ll look at stack files in a later chapter. For now we’ll focus on the imperative method.

$ docker service create --name web-fe \
-p 8080:8080 \
--replicas 5 \
nigelpoulton/ddd-book:web0.1

z7ovearqmruwk0u2vc5o7ql0p
overall progress: 5 out of 5 tasks
1/5: running [==================================================>]
2/5: running [==================================================>]
3/5: running [==================================================>]
4/5: running [==================================================>]
5/5: running [==================================================>]
verify: Service converged

Let’s review the command and output.

The docker service create command tells Docker to deploy a new service. We used
the --name flag to name itweb-fe. We told Docker to map port 8080 on every swarm
node to 8080 inside of each service replica (container). Next, we used the --replicas
flag to tell Docker there should always be 5 replicas of this service. Finally, we told
Docker which image to base the replicas on — it’s important to understand that all
service replicas use the same image and config!

Terminology: Services deploy containers, and we often call these containers
replicas. For example, a service that deploys three replicas will deploy three
identical containers.
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The command was sent to a manager node and the leader manager instantiated 5 replicas
across the swarm. Managers on this swarm aren’t allowed to run application containers,
meaning all 5 replicas are deployed to worker nodes. Each worker that received a work
task pulled the image and started a replica listening on port 8080. The swarm leader
also ensured a copy of the desired statewas stored on the cluster and replicated to every
manager.

But this isn’t the end. All services are constantly monitored by the swarm— the swarm
runs a background reconciliation loop that constantly compares the observed state of the
service with the desired state. If the two states match, the world is a happy place and no
further action is needed. If they don’t match, swarm takes actions to bring observed state
into line with desired state.

As an example, if a worker hosting one of the 5 replicas fails, the observed state of the
service will drop from 5 replicas to 4 and will no longer match the desired state of 5. As
a result, the swarm will start a new replica to bring the observed state back in line with
desired state. We call this reconciliation or self-healing and it’s a key tenet of cloud-native
applications.

Viewing and inspecting services

You can use the docker service ls command to see a list of all services running on a
swarm.

$ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
z7o...uw web-fe replicated 5/5 nigelpoulton/ddd... *:8080->8080/tcp

The output shows a single service and some basic config and state info. Among other
things, we can see the name of the service and that 5 out of the 5 desired replicas are
running. If you run this command soon after deploying the service it might not show
all replicas as running. This is usually while the workers pull the image.

You can use the docker service ps command to see a list of service replicas and the
state of each.

$ docker service ps web-fe
ID NAME IMAGE NODE DESIRED CURRENT
817...f6z web-fe.1 nigelpoulton/... wrk1 Running Running 2 mins
a1d...mzn web-fe.2 nigelpoulton/... wrk1 Running Running 2 mins
cc0...ar0 web-fe.3 nigelpoulton/... wrk2 Running Running 2 mins
6f0...azu web-fe.4 nigelpoulton/... wrk3 Running Running 2 mins
dyl...p3e web-fe.5 nigelpoulton/... wrk3 Running Running 2 mins

The format of the command is docker service ps <service-name or service-id>.
The output displays each replica on its own line, shows the node it’s running on, and
shows desired state and the current observed state.
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For detailed information about a service, use the docker service inspect command.

$ docker service inspect --pretty web-fe
ID: z7ovearqmruwk0u2vc5o7ql0p
Name: web-fe
Service Mode: Replicated
Replicas: 5
Placement:
UpdateConfig:
Parallelism: 1
On failure: pause
Monitoring Period: 5s
Max failure ratio: 0
Update order: stop-first
RollbackConfig:
Parallelism: 1
On failure: pause
Monitoring Period: 5s
Max failure ratio: 0
Rollback order: stop-first
ContainerSpec:
Image: nigelpoulton/ddd-book:web0.1@sha256:8d6280c0042...1b9e4336730e5
Init: false
Resources:
Endpoint Mode: vip
Ports:
PublishedPort = 8080
Protocol = tcp
TargetPort = 8080
PublishMode = ingress

The example uses the --pretty flag to limit the output to the most interesting items
printed in an easy-to-read format. Leaving off the --pretty flag will give you more
info. I highly recommend you read through the output of docker inspect commands
as they’re a great source of information and a great way to learn what’s going on under
the hood.

We’ll come back to some of these outputs later.

Replicated vs global services

The default replication mode of a service is replicated. This deploys a desired number
of replicas and distributes them as evenly as possible across the cluster.

The other mode is global. This runs a single replica on every node in the swarm.

To deploy a global service you need to pass the --mode global flag to the docker
service create command. Global services do not accept the --replicas flag as they
always run one replica per available node. However, they do respect a node’s availability.
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For example, if you’ve drained manager nodes so they don’t run application containers,
global services will not schedule replicas to them.

Scaling a service

Another powerful feature of services is the ability to easily scale them up and down.

Let’s assume business is booming and we’re seeing double the amount of traffic hitting
the web front-end. Fortunately, we can easily scale the service up with the docker
service scale command.

$ docker service scale web-fe=10
web-fe scaled to 10
overall progress: 10 out of 10 tasks
1/10: running [==================================================>]
2/10: running [==================================================>]
3/10: running [==================================================>]
4/10: running [==================================================>]
5/10: running [==================================================>]
6/10: running [==================================================>]
7/10: running [==================================================>]
8/10: running [==================================================>]
9/10: running [==================================================>]
10/10: running [==================================================>]

This command scales the number of service replicas from 5 to 10. In the background
it updates the service’s desired state from 5 to 10. Run another docker service ls to
verify the operation was successful.

$ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
z7o...uw web-fe replicated 10/10 nigelpoulton/ddd... *:8080->8080/tcp

Running a docker service ps command will show that the service replicas are
balanced evenly across all available nodes.
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$ docker service ps web-fe
ID NAME IMAGE NODE DESIRED CURRENT
nwf...tpn web-fe.1 nigelpoulton/... wrk1 Running Running 7 mins
yb0...e3e web-fe.2 nigelpoulton/... wrk3 Running Running 7 mins
mos...gf6 web-fe.3 nigelpoulton/... wrk2 Running Running 7 mins
utn...6ak web-fe.4 nigelpoulton/... wrk3 Running Running 7 mins
2ge...fyy web-fe.5 nigelpoulton/... wrk2 Running Running 7 mins
64y...m49 web-fe.6 igelpoulton/... wrk3 Running Running about a min
ild...51s web-fe.7 nigelpoulton/... wrk1 Running Running about a min
vah...rjf web-fe.8 nigelpoulton/... wrk1 Running Running about a min
xe7...fvu web-fe.9 nigelpoulton/... wrk2 Running Running 45 seconds ago
l7k...jkv web-fe.10 nigelpoulton/... wrk1 Running Running 46 seconds ago

Behind the scenes, Swarm runs a scheduling algorithm called spread that attempts to
balance replicas as evenly as possible across available nodes. At the time of writing,
this amounts to running an equal number of replicas on each node without taking into
consideration things like CPU load etc.

Run another docker service scale command to bring the number down from 10 to 5.

$ docker service scale web-fe=5
web-fe scaled to 5
overall progress: 5 out of 5 tasks
1/5: running [==================================================>]
2/5: running [==================================================>]
3/5: running [==================================================>]
4/5: running [==================================================>]
5/5: running [==================================================>]
verify: Service converged

Now that you know how to scale services, let’s see how to remove them.

Removing services

Removing services is simple — may be too simple.

Run the following docker service rm command to delete the web-fe service.

$ docker service rm web-fe
web-fe

Confirm it’s gone with the docker service ls command.
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$ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS

Be careful using this command as it deletes all service replicas without asking for
confirmation.

Let’s look at how to push rolling updates.

Rolling updates

Pushing updates to applications is a fact of life, and for the longest time it was a painful
process. I’ve personally lost more than enough weekends to major application updates
and I’ve no intention of doing it again.

Well… thanks to Docker services, pushing updates to well-designed microservices apps is
easy.

Terminology:We use terms like rollouts, updates, and rolling updates to mean
the same thing – updating a live application.

To see a rollout, we’re going to deploy a new service. But before we do that, we’re going
to create a new overlay network for the service. This isn’t necessary, but I want you to
see how it is done and how to attach the service to it.

$ docker network create -d overlay uber-net
43wfp6pzea470et4d57udn9ws

Run a docker network ls to verify that the network created properly and is visible on
the Docker host.

$ docker network ls
NETWORK ID NAME DRIVER SCOPE
43wfp6pzea47 uber-net overlay swarm
<Snip>

The uber-net network was successfully created with the swarm scope and is currently
only visible on manager nodes in the swarm. It will be dynamically extended to worker
nodes when they run workloads that use it.

An overlay network is a layer 2 network that can span all swarm nodes. All containers
on the same overlay network will be able to communicate, even if they’re deployed
to different nodes. This works even if all swarm nodes are on different underlying
networks.
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Figure 10.5 shows four swarm nodes connected to two different underlay networks
connected by a layer 3 router. The overlay network spans all 4 nodes and creates a single
flat layer 2 network that abstracts all the underlying networking.

Figure 10.5

Let’s create a new service and attach it to the uber-net network.

$ docker service create --name uber-svc \
--network uber-net \
-p 8080:8080 --replicas 12 \
nigelpoulton/ddd-book:web0.1

dhbtgvqrg2q4sg07ttfuhg8nz
overall progress: 12 out of 12 tasks
1/12: running [==================================================>]
2/12: running [==================================================>]
3/12: running [==================================================>]
<Snip>
12/12: running [==================================================>]
verify: Service converged

Let’s see what we deployed.

The first thing we did was name the service uber-svc. We then used the --network
flag to tell it to attach all replicas to the uber-net network. We then exposed port
8080 across the entire swarm and mapped it to port 8080 inside each of the 12 replicas
we asked it to run. Finally, we told it to base all replicas on the nigelpoulton/ddd-
book:web0.1 image.

This mode of publishing a port on every node in the swarm— even nodes not running
service replicas — is called ingress mode and is the default. The alternative mode is host
mode which only publishes the service on swarm nodes running replicas.
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Run a docker service ls and a docker service ps to verify the state of the new
service.

$ docker service ls
ID NAME REPLICAS IMAGE
dhbtgvqrg2q4 uber-svc 12/12 nigelpoulton/ddd-book:web0.1

$ docker service ps uber-svc
ID NAME IMAGE NODE DESIRED CURRENT STATE
0v...7e5 uber-svc.1 nigelpoulton/ddd... wrk3 Running Running 1 min
bh...wa0 uber-svc.2 nigelpoulton/ddd... wrk2 Running Running 1 min
23...u97 uber-svc.3 nigelpoulton/ddd... wrk2 Running Running 1 min
82...5y1 uber-svc.4 nigelpoulton/ddd... wrk2 Running Running 1 min
c3...gny uber-svc.5 nigelpoulton/ddd... wrk3 Running Running 1 min
e6...3u0 uber-svc.6 nigelpoulton/ddd... wrk1 Running Running 1 min
78...r7z uber-svc.7 nigelpoulton/ddd... wrk1 Running Running 1 min
2m...kdz uber-svc.8 nigelpoulton/ddd... wrk3 Running Running 1 min
b9...k7w uber-svc.9 nigelpoulton/ddd... wrk3 Running Running 1 min
ag...v16 uber-svc.10 nigelpoulton/ddd... wrk2 Running Running 1 min
e6...dfk uber-svc.11 nigelpoulton/ddd... wrk1 Running Running 1 min
e2...k1j uber-svc.12 nigelpoulton/ddd... wrk1 Running Running 1 min

Open a web browser and point it to the IP address of any swarm node on port 8080 to
see the service running.

Figure 10.6

Feel free to point your web browser to other nodes in the swarm. You’ll be able to reach
the web service from any node because the service is published across the entire swarm.

Let’s now assume there’s another book you need to add to the site. Let’s also assume a
new image has been created for it and added to the same Docker Hub repository, but
this one is tagged as web0.2 instead of web0.1.
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Let’s also assume that you’ve been tasked with pushing the updated image to the swarm
in a staged manner — 2 replicas at a time with a 20 second delay between each. You can
use the following docker service update command to accomplish this.

$ docker service update \
--image nigelpoulton/ddd-book:web0.2 \
--update-parallelism 2 \
--update-delay 20s \
uber-svc

uber-svc
overall progress: 2 out of 12 tasks
1/12: running [==================================================>]
2/12: running [==================================================>]
3/12: ready [======================================> ]
4/12: ready [======================================> ]
5/12:
6/12:
<Snip>
11/12:
12/12:

Let’s review the command. docker service update lets us make updates to running
services by updating the service’s desired state. This example specifies a new version of
the image (web0.2 instead of web0.1). It also specifies the --update-parallelism and
--update-delay flags to make sure that the new image is pushed out 2 replicas at a time
with a 20 second cool-off period after each. Finally, it instructs the swarm to make the
changes to the uber-svc service.

If you run a docker service ps uber-svc while the update is in progress, some of
the replicas will be on the new version and some on the old. If you give the operation
enough time to complete, all replicas will eventually reach the new desired state of using
the web0.2 image.

$ docker service ps uber-svc
ID NAME IMAGE NODE DESIRED CURRENT STATE
7z...nys uber-svc.1 nigel...web0.2 mgr2 Running Running 13 secs
0v...7e5 \_uber-svc.1 nigel...web0.1 wrk3 Shutdown Shutdown 13 secs
bh...wa0 uber-svc.2 nigel...web0.1 wrk2 Running Running 1 min
e3...gr2 uber-svc.3 nigel...web0.2 wrk2 Running Running 13 secs
23...u97 \_uber-svc.3 nigel...web0.1 wrk2 Shutdown Shutdown 13 secs
82...5y1 uber-svc.4 nigel...web0.1 wrk2 Running Running 1 min
c3...gny uber-svc.5 nigel...web0.1 wrk3 Running Running 1 min
e6...3u0 uber-svc.6 nigel...web0.1 wrk1 Running Running 1 min
78...r7z uber-svc.7 nigel...web0.1 wrk1 Running Running 1 min
2m...kdz uber-svc.8 nigel...web0.1 wrk3 Running Running 1 min
b9...k7w uber-svc.9 nigel...web0.1 wrk3 Running Running 1 min
ag...v16 uber-svc.10 nigel...web0.1 wrk2 Running Running 1 min
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e6...dfk uber-svc.11 nigel...web0.1 wrk1 Running Running 1 min
e2...k1j uber-svc.12 nigel...web0.1 wrk1 Running Running 1 min

You can observe the update in real-time by opening a web browser to any swarm node
on port 8080 and hitting refresh a few times. Some of the requests will be serviced by
replicas running the old version and some will be serviced by replicas running the new
version. After enough time, all requests will be serviced by replicas running the updated
version.

Congratulations. You’ve just completed a zero-downtime rolling update to a live
containerized application.

If you run a docker service inspect --pretty command against the service, you’ll
see the update parallelism and update delay settings have been merged into the service’s
definition. This means future updates will automatically use these settings unless you
override them as part of the docker service update command.

$ docker service inspect --pretty uber-svc
ID: mub0dgtc8szm80ez5bs8wlt19
Name: uber-svc
Service Mode: Replicated
Replicas: 12
<Snip>
UpdateConfig:
Parallelism: 2 <<--------
Delay: 20s <<--------
<Snip>
ContainerSpec:
Image: nigelpoulton/ddd-book:web0.2@sha256:8fc6161f981b...4c2d16062678d
Resources:
Networks: uber-net
Ports:
PublishedPort = 8080
Protocol = tcp
TargetPort = 8080
PublishMode = ingress

You should also note a couple of things about the service’s network config. All nodes
in the swarm that are running a replica for the service will have the uber-net overlay
network that we created earlier. We can verify this by running docker network ls on
any node running a replica.

You should also note the Networks portion of the docker service inspect output.
This shows the uber-net network as well as the swarm-wide (PublishMode: ingress)
port mapping.
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Troubleshooting

Swarm Service logs can be viewed with the docker service logs command. However,
not all logging drivers support it.

By default, Docker nodes configure services to use the json-file log driver, but other
drivers exist, including:

• awslogs

• gelf

• gcplogs

• journald (only works on Linux hosts running systemd)

• splunk

• syslog

json-file and journald are the easiest to configure, and both work with the docker
service logs command. The format of the command is docker service logs
<service-name>.

If you’re using 3rd-party logging drivers, you should view those logs using the logging
platform’s native tools.

The following snippet from a daemon.json configuration file shows a Docker host
configured to use syslog. The default location for daemon.json is /etc/docker/dae-
mon.json but the file may not exist unless you manually create it to configure custom
settings.

{
"log-driver": "syslog"

}

You can force individual services to use a different driver by passing the --log-driver
and --log-opts flags to the docker service create command. These will override
anything set in daemon.json.

Service logs expect applications to run as PID 1 and send logs to STDOUT and errors to
STDERR. The logging driver forwards these “logs” to the locations configured via the
logging driver.

The following docker service logs command shows the logs for all replicas in a
service called svc1 that experienced a couple of failures starting a replica.
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$ docker service logs svc1
svc1.1.zhc3cjeti9d4@wrk2 | [emerg] 1#1: host not found...
svc1.1.zhc3cjeti9d4@wrk2 | nginx: [emerg] host not found..
svc1.1.6m1nmbzmwh2d@wrk2 | [emerg] 1#1: host not found...
svc1.1.6m1nmbzmwh2d@wrk2 | nginx: [emerg] host not found..
svc1.1.1tmya243m5um@mgr1 | 10.255.0.2 "GET / HTTP/1.1" 302

The output is trimmed to fit the page, but you can see that logs from all three service
replicas are shown (the two that failed and the one that’s running). Each line starts with
the name of the replica, which includes the service name, replica number, replica ID, and
name of host that it’s scheduled on. Following that is the log output.

It’s hard to tell because it’s trimmed to fit the book, but it looks like the first two replicas
failed because they were trying to connect to another service that was still starting.

You can follow logs (--follow), tail them (--tail), and get extra details (--details).

Backing up and recovering a Swarm

Backing up a swarm is the process of backup the control plane and can be used to
recover swarm in the event of a catastrophic failure or corruption. Recovering a swarm
from a backup is extremely rare. However, business critical environments should always
be prepared for worst-case scenarios.

You might be asking why backups are necessary if the control plane is replicated and
highly-available (HA). To answer this question, consider the scenario where a malicious
actor deletes all of the Secrets on a swarm. HA cannot help in this scenario as the delete
operation is automatically replicated to all manager nodes. In this scenario, the highly-
available replicated cluster store is working against you — quickly propagating the
delete operation. Your only recovery options are to either recreate the deleted objects
from copies in a vault or source code repo, or attempt a recovery from a recent backup.

Managing your swarm and applications declaratively is a great way to prevent the need
to recover from a backup. For example, storing configuration objects outside of the
swarm in a version control repository will give you the option to redeploy things like
networks, services, secrets, and other objects.

Anyway, let’s see how to backup a swarm.

Backing up a Swarm

Swarm configuration and state is stored in /var/lib/docker/swarm on every manager
node. This Raft log keys, overlay networks, Secrets, Configs, Services, and more. A
swarm backup is a copy of all the files in this directory.

As the contents of the directory are replicated to all managers, it’s possible to perform
backups from multiple managers. However, as you have to stop the Docker daemon as
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part of the procedure, it’s a good idea to perform the backup from a non-leader manager.
This is because stopping Docker on the leader will initiate a leader election. You should
also perform the backup at a quiet time for the business, as stopping managers increases
the risk of the swarm losing quorum if another manager fails during the backup.

Create the following network before starting the backup. We’ll check for this in a later
step after performing the recovery.

$ docker network create -d overlay unimatrix01

The procedure we’re about to follow is a high-risk procedure and for demonstration
purposes only. You’ll need to tweak it for your production environment. You may also
have to prefix commands with sudo.

1. Stop Docker on a non-leader manager.

If you have any containers or service replicas running on the node, this action may
stop them. However, if you’ve been following along, your manager nodes won’t be
running any application containers.

If you locked your swarm, be sure to have a copy of the swarm unlock key.

$ service docker stop

2. Backup the Swarm config.

This example uses the Linux tar utility to perform the file copy that will be the
backup. Feel free to use a different tool.

$ tar -czvf swarm.bkp /var/lib/docker/swarm/
tar: Removing leading `/' from member names
/var/lib/docker/swarm/
/var/lib/docker/swarm/docker-state.json
/var/lib/docker/swarm/state.json
<Snip>

3. Verify the backup file exists.

$ ls -l
-rw-r--r-- 1 root root 450727 May 22 12:34 swarm.bkp

In the real world, you should store and rotate this backup in line with any corpo-
rate backup retention policies.

At this point, the swarm is backed up and you can restart Docker on the node.

4. Restart Docker.
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$ service docker restart

5. Unlock the Swarm to admit the restarted manager. You will only have to perform
this step if your Swarm is locked. If you can’t remember your Swarm unlock key,
run a docker swarm unlock-key command on a different manager.

$ docker swarm unlock

Please enter unlock key:

Recovering a Swarm

Restoring a Swarm from backup is only for situations where the swarm is corrupted, or
otherwise lost, and you cannot recover objects from copies of config files.

You’ll need the swarm.bkp and a copy of your swarm’s unlock key (if your swarm is
locked).

The following requirements must be met for a recovery operation to work:

1. You can only restore to a node running the same version of Docker the backup was
performed on

2. You can only restore to a node with the same IP address as the node the backup
was performed on

Perform the operation on the manager you performed the backup from. You may need
to prefix commands with sudo.

1. Stop Docker on the manager.

$ service docker stop

2. Delete the Swarm config.

$ rm -r /var/lib/docker/swarm

At this point, the manager is down and ready for the restore operation.

3. Restore the Swarm configuration from the backup file and verify the files recover
properly.

In this example, we’ll restore from a zipped tar file called swarm.bkp. Restoring to
the root directory is required, as backup includes the full path to the original files.
This may be different in your environment.
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$ tar -zxvf swarm.bkp -C /

$ ls /var/lib/docker/swarm
certificates docker-state.json raft state.json worker

4. Start Docker.

$ service docker start

5. Unlock your Swarm with your Swarm unlock key.

$ docker swarm unlock
Please enter unlock key: <your key>

6. Initialize a new swarm with the configuration from the backup. Be sure to use the
appropriate IP address for the node you’re performing the restore operation on.

$ docker swarm init --force-new-cluster \
--advertise-addr 10.0.0.1:2377 \
--listen-addr 10.0.0.1:2377

Swarm initialized: current node (jhsg...3l9h) is now a manager.

7. Check that the unimatrix01 network was recovered as part of the operation.

$ docker network ls
NETWORK ID NAME DRIVER SCOPE
z21s5v82by8q unimatrix01 overlay swarm

Congratulations. The Swarm is recovered.

8. Add new managers and workers and take fresh backups.

Remember to test this procedure regularly and thoroughly. You do not want it to fail
when you need it most!

Docker Swarm - The Commands

• docker swarm init is the command to create a new swarm. The node that you
run the command on becomes the first manager and is switched to run in swarm
mode.

• docker swarm join-token reveals the commands and tokens needed to join
workers and managers to a swarm. To reveal the command to join a new manager,
use the docker swarm join-token manager command. To get the command to
join a worker, use the docker swarm join-token worker command. Be sure to
keep your join tokens secure!
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• docker node ls lists all nodes in the swarm, including which are managers and
which is the leader.

• docker service create is the command to create a new service.

• docker service ls lists running services and gives basic info on the state of the
service and any replicas it’s running.

• docker service ps <service> gives more detailed information about individual
service replicas.

• docker service inspect gives very detailed information on a service. It accepts
the --pretty flag to return only the most important information.

• docker service scale lets you scale the number of replicas in a service up and
down.

• docker service update lets you update many of the properties of a running
service.

• docker service logs lets you view the logs of a service.

• docker service rm is the command to delete a service from the swarm. Use it
with caution as it deletes all service replicas without asking for confirmation.

Chapter summary

Docker Swarm is Docker’s native technology for managing clusters of Docker nodes and
orchestrating microservices applications. It is similar to Kubernetes but easier to use.

At its core, Swarm has a secure clustering component, and an orchestration component.

The clustering component is enterprise-grade and offers a wealth of security and HA
features that are automatically configured and extremely simple to modify.

The orchestration component allows you to deploy and manage cloud-native microser-
vices applications in a simple declarative manner.

We’ll dig deeper into deploying cloud-native microservices apps Chapter 14.





11: Docker Networking
It’s always the network!

Any time there’s an infrastructure problem, we always blame the network. Part of the
reason is that networks are at the center of everything — no network, no app!

In the early days of Docker, networking was hard. These days, it’s almost a pleasure ;-)

In this chapter, we’ll look at the fundamentals of Docker networking. Things like the
Container Network Model (CNM) and libnetwork. We’ll also get our hands dirty
building and testing networks.

As usual, we’ll split the chapter into three parts:

• The TLDR
• The deep dive
• The commands

Docker Networking - The TLDR

Docker runs applications inside of containers, and applications need to communicate
with other application. Some of these other applications are containers and some aren’t.
This means Docker needs strong networking capabilities.

Fortunately, Docker has solutions for container-to-container networks, as well as
connecting to existing networks and VLANs. The latter is important for containerized
apps that interact with external services such as VM’s and physical servers.

Docker networking is based on an open-source pluggable architecture called the
Container Network Model (CNM). libnetwork is the reference implementation of the
CNM, and it provides all of Docker’s core networking capabilities. Drivers plug-in to
libnetwork to provide specific network topologies.

To create a smooth out-of-the-box experience, Docker ships with a set of native
drivers for the most common networking requirements. These include single-host
bridge networks, multi-host overlays, and options for plugging into existing VLANs.
Ecosystem partners can extend things further by providing their own drivers.

Last but not least, libnetwork provides native service discovery and basic container
load balancing.

That’s this big picture. Let’s get into the detail.
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Docker Networking - The Deep Dive

We’ll organize this section of the chapter as follows:

• The theory

• Single-host bridge networks

• Multi-host overlay networks

• Connecting to existing networks

• Service Discovery

• Ingress load balancing

The theory

At the highest level, Docker networking comprises three major components:

• The Container Network Model (CNM)

• Libnetwork

• Drivers

The CNM is the design specification and outlines the fundamental building blocks of a
Docker network.

Libnetwork is a real-world implementation of the CNM. It’s open-sourced as part of
the Moby project and used by Docker and other projects.

Drivers extend the model by implementing specific network topologies such as VXLAN
overlay networks.

Figure 11.1 shows how they fit together at a very high level.
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Figure 11.1

Let’s look a bit closer at each.

The Container Network Model (CNM)

Everything starts with a design.

The design guide for Docker networking is the CNM. It outlines the fundamental
building blocks of a Docker network, and you can read the full spec here:

• https://github.com/docker/libnetwork/blob/master/docs/design.md

I recommend reading the entire spec, but at a high level, it defines three building blocks:

• Sandboxes

• Endpoints

• Networks

A sandbox is an isolated network stack in a container. It includes Ethernet interfaces,
ports, routing tables, and DNS config.

Endpoints are virtual network interfaces (E.g. veth). Like normal network interfaces,
these are responsible for making connections. For example, endpoints to connect
sandboxes to networks.

Networks are a software implementation of a switch (802.1d bridge). As such, they group
together and isolate a collection of endpoints that need to communicate.

Figure 11.2 shows the three components and how they connect.
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Figure 11.2 The Container NetworkModel (CNM)

The atomic unit of scheduling on Docker is the container, and as the name suggests, the
Container Network Model is all about providing networking for containers. Figure 11.3
shows how CNM components relate to containers — sandboxes are placed inside of
containers to provide network connectivity.

Figure 11.3

Container A has a single interface (endpoint) and is connected to Network A. Container
B has two interfaces (endpoints) and is connected to Network A andNetwork B.
The two containers can communicate because they are both connected to Network
A. However, the two endpoints in Container B cannot communicate with each other
without the assistance of a layer 3 router.

It’s also important to understand that endpoints behave like regular network adapters,
meaning they can only be connected to a single network. Therefore, a container needing
to connect to multiple networks will need multiple endpoints.

Figure 11.4 extends the diagram again, this time adding a Docker host. Although
Container A and Container B are running on the same host, their network stacks are
completely isolated at the OS-level via the sandboxes and can only communicate via a
network.
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Figure 11.4

Libnetwork

The CNM is the design doc and libnetwork is the canonical implementation. It’s open-
source, cross-platform (Linux and Windows), lives in the Moby project, and used by
Docker.

In the early days of Docker, all the networking code existed inside the daemon. This
was a nightmare — the daemon became bloated, and it didn’t follow the Unix principle
of building modular tools that can work on their own, but also be easily composed
into other projects. As a result, the network code got ripped out and refactored into an
external library called libnetwork based on the principles of the CNM. Today, all of the
core Docker networking code lives in libnetwork.

As well as implementing the core components of the CNM, libnetwork also imple-
ments native service discovery, ingress-based container load balancing, and the network
control plane and management plane.

Drivers

If libnetwork implements the control plane and management plane, then drivers
implement the data plane. For example, connectivity and isolation is all handled by
drivers. So is the creation of networks. The relationship is shown in Figure 11.5.
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Figure 11.5

Docker ships with several built-in drivers, known as native drivers or local drivers. These
include bridge, overlay, and macvlan, and they build the most common network
topologies. 3rd-parties can also write network drivers to implement other network
topologies and more advanced configurations.

Every network is owned by a driver, and the driver is responsible for the creation and
management of all resources on the network. For example, an overlay network called
“prod-fe-cuda” will be owned and managed by the overlay driver. This means the
overlay driver is invoked for the creation, management, and deletion of all resources
on that network.

In order to meet the demands of complex highly-fluid environments, libnetwork
allows multiple network drivers to be active at the same time. This means your Docker
environment can sport a wide range of heterogeneous networks.

Let’s look a bit closer at single-host bridge networks, multi-host overlay network, and
connecting to existing networks…

Single-host bridge networks

The simplest type of Docker network is the single-host bridge network.

The name tells us two things:

• Single-host tells us it only spans a single Docker host and can only connect
containers that are on the same host.

• Bridge tells us that it’s an implementation of an 802.1d bridge (layer 2 switch).
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Docker on Linux creates single-host bridge networks with the built-in bridge driver,
whereas Docker on Windows creates them using the built-in nat driver. For all intents
and purposes, they work the same.

Figure 11.6 shows two Docker hosts with identical local bridge networks called “mynet”.
Even though the networks are identical, they are independent and isolated. This
means the containers in the picture cannot communicate because they are on different
networks.

Figure 11.6

Every Docker host gets a default single-host bridge network. On Linux it’s called
“bridge” and on Windows it’s called “nat” (it’s just a coincidence that they have the same
name as the drivers used to create them). By default, all new containers will be attached
to these networks unless you override it on the command line with the --network flag.

The following commands show the output of a docker network ls command on newly
installed Linux and Windows Docker hosts. The output is trimmed so that it only shows
the default network on each host. Notice how the name of the network is the same as
the driver that was used to create it — this is a coincidence and not a requirement.

//Linux
$ docker network ls
NETWORK ID NAME DRIVER SCOPE
333e184cd343 bridge bridge local

//Windows
> docker network ls
NETWORK ID NAME DRIVER SCOPE
095d4090fa32 nat nat local

As always, the docker inspect command is a treasure trove of great information. I
highly recommended reading through its output if you’re interested in low-level detail.
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$ docker inspect bridge
[

{
"Name": "bridge", << Will be nat on Windows
"Id": "333e184...d9e55",
"Scope": "local",
"Driver": "bridge", << Will be nat on Windows
"EnableIPv6": false,
"IPAM": {

"Driver": "default",
"Options": null,
"Config": [

{
"Subnet": "172.17.0.0/16"

}
]

},
"Internal": false,
"Attachable": false,
"Ingress": false,
"ConfigFrom": {

"Network": ""
},
<Snip>

}
]

Docker networks built with the bridge driver on Linux hosts are based on the battle-
hardened linux bridge technology that has existed in the Linux kernel for 20 years. This
means they’re high performance and extremely stable. It also means you can inspect
them using standard Linux utilities. For example.

$ ip link show docker0
3: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc...

link/ether 02:42:af:f9:eb:4f brd ff:ff:ff:ff:ff:ff

The default “bridge” network, on all Linux-based Docker hosts, maps to an underlying
Linux bridge in the kernel called “docker0”. We can see this from the output of docker
inspect.

$ docker inspect bridge | grep bridge.name
"com.docker.network.bridge.name": "docker0",

Figure 11.7 shows containers connecting to the “bridge” network. The “bridge” network
maps to the “docker0” Linux bridge in the host’s kernel, which maps to an Ethernet
interface on the host via port mappings.
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Figure 11.7

Let’s use the docker network create command to create a new single-host bridge
network called “localnet”.

$ docker network create -d bridge localnet

The new network is created and will appear in the output of any future docker network
ls commands. You’ll also have a new Linux bridge created in the kernel.

Let’s use the Linux brctl tool to look at the Linux bridges currently on our system. You
may have to install the brctl binary using apt-get install bridge-utils, or the
equivalent for your Linux distro.

$ brctl show
bridge name bridge id STP enabled interfaces
docker0 8000.0242aff9eb4f no
br-20c2e8ae4bbb 8000.02429636237c no

The output shows two bridges. The first line is the “docker0” bridge that we already
know about. The second bridge (br-20c2e8ae4bbb) relates to the new localnet bridge
network just created. Neither of them have spanning tree enabled, and neither have any
devices connected (interfaces column).

At this point, the bridge configuration on the host looks like Figure 11.8.
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Figure 11.8

Let’s create a new container and attach it to the new localnet bridge network.

$ docker run -d --name c1 \
--network localnet \
alpine sleep 1d

This container will be attached to the localnet network. Confirm this with a docker
inspect. If your output isn’t formatted properly, you can try piping it through jq. You’ll
obviously need jq installed on your system.

$ docker inspect localnet --format '{{json .Containers}}'
{
"4edcbd...842c3aa": {
"Name": "c1",
"EndpointID": "43a13b...3219b8c13",
"MacAddress": "02:42:ac:14:00:02",
"IPv4Address": "172.20.0.2/16",
"IPv6Address": ""
}

},

The output shows that the new “c1” container is on the localnet bridge/nat network.

It you run another brctl show you’ll see c1’s interface attached to the br-20c2e8ae4bbb
bridge.

$ brctl show
bridge name bridge id STP enabled interfaces
br-20c2e8ae4bbb 8000.02429636237c no vethe792ac0
docker0 8000.0242aff9eb4f no

This is shown in Figure 11.9.
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Figure 11.9

If we add another new container to the same network, it will be able to ping the “c1”
container by name. This is because all containers automatically register with the embed-
ded Docker DNS service, allowing them to resolve the names of all other containers on
the same network.

Beware: The default bridge network, the one called “bridge”, doesn’t support
name resolution via the Docker DNS service. All other user-defined bridge
networks do. The following demo will work because the container is on the
user-defined localnet network.

Let’s test it.

1. Create a new interactive container called “c2” and put it on the same localnet
network as “c1”.

$ docker run -it --name c2 \
--network localnet \
alpine sh

Your terminal will switch into the “c2” container.

2. From within the “c2” container, ping the “c1” container by name.

> ping c1
Pinging c1 [172.26.137.130] with 32 bytes of data:
Reply from 172.26.137.130: bytes=32 time=1ms TTL=128
Reply from 172.26.137.130: bytes=32 time=1ms TTL=128
Control-C

It works! This is because the c2 container is running a local DNS resolver that
forwards requests to the internal Docker DNS server. This DNS server maintains
mappings for all containers started with the --name or --net-alias flag.
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Try running some network-related commands while you’re still logged on to the
container. It’s a great way of learning more about how Docker networking works. You
might have to manually install your favourite networking tools to do this.

So far, we’ve said that containers on bridge networks can only communicate with other
containers on the same network. However, you can get around this using port mappings.

Port mappings let you map a container to a port on the Docker host. Any traffic hitting
the Docker host on the configured port will be re-directed to the container. The high-
level flow is shown in Figure 11.10

Figure 11.10

In the diagram, the application running in the container is operating on port 80. This is
mapped to port 5001 on the host’s 10.0.0.15 interface. The result is all traffic hitting
the host on 10.0.0.15:5001 being redirected to the container on port 80.

Let’s walk through an example of mapping port 80 on a container running a web server,
to port 5001 on the Docker host. The example will use NGINX on Linux.

1. Run a new NGINX web server container and map port 80 to 5001 on the Docker
host.
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$ docker run -d --name web \
--network localnet \
--publish 5001:80 \
nginx

2. Verify the port mapping.

$ docker port web
80/tcp -> 0.0.0.0:5001
80/tcp -> [::]:5001

This shows the port mapping exists on all interfaces on the Docker host.

3. Test the configuration by pointing a web browser to port 5001 on the Docker host.
To complete this step, you’ll need to know the IP or DNS name of your Docker
host. If you’re using Docker Desktop, you’ll be able to use localhost:5001 or
127.0.0.1:5001.

Figure 11.11

Any external system can now access the NGINX container (running on the
localnet bridge network) by hitting the Docker host on port 5001.

Mapping ports like this works, but it’s clunky and doesn’t scale. For example, only a
one container can bind to any particular port on the host. In our example, no other
containers will be able to bind to port 5001. This is one of the reason’s that single-host
bridge networks are only useful for local development and very small applications.

Multi-host overlay networks

The next chapter is dedicated to multi-host overlay networks. So we’ll keep this section
short.
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Overlay networks are multi-host. This means a single network can span every node
in a swarm, allowing containers on different hosts to communicate. They’re great for
container-to-container communication and they scale well.

Docker provides a native driver for overlay networks. This makes creating them as
simple as adding the -d overlay flag to the docker network create command.

We’ll dive into lots of examples in the next chapter.

Connecting to existing networks

The ability to connect containerized apps to external systems and physical networks is
important. A common example is partially containerized apps — the containerized parts
need a way to communicate with the parts still running on existing physical networks
and VLANs.

The built-in MACVLAN driver (transparent on Windows) was created with this in mind.
It gives each container its own IP and MAC address on the external physical network,
making them look just like a physical server or VM. This is shown in Figure 11.12.

Figure 11.12

On the positive side, MACVLAN performance is good as it doesn’t require port map-
pings or additional bridges. However, it requires the host NIC to be in promiscuous
mode, which isn’t allowed on many corporate networks and public cloud platforms.
So…MACVLAN is great for your data center networks if your network team allows
promiscuous mode, but it probably won’t work on your public cloud.

Let’s dig a bit deeper with the help of some pictures and a hypothetical example. This
example will work if your host NIC is in promiscuous mode on a network that allows
it. It also requires an existing VLAN 100 on the network. You can adapt it if the VLAN
config on your physical network is different.

Assume we have an existing physical network with two VLANS:

• VLAN 100: 10.0.0.0/24

• VLAN 200: 192.168.3.0/24
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Figure 11.13

Next, we add a Docker host and connect it to the network.

Figure 11.14

Then comes a requirement for a container running on that host to be on VLAN 100.
To do this, we create a new Docker network with the macvlan driver. However, the
macvlan driver needs us to tell it a few things about the network we’re plumbing it into.
Things like:

• Subnet info

• Gateway

• Range of IP’s it can assign to containers

• Which interface or sub-interface on the host to use

The following command will create a newMACVLAN network called “macvlan100”
that will connect containers to VLAN 100. You may have to change the parent interface
name from eth0 to match the parent interface name on your system, such as enp0s1. For
example, changing -o parent=eth0.100 to -o parent=enp0s1.100.
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$ docker network create -d macvlan \
--subnet=10.0.0.0/24 \
--ip-range=10.0.0.0/25 \
--gateway=10.0.0.1 \
-o parent=eth0.100 \
macvlan100

This will create the “macvlan100” network and the eth0.100 sub-interface. The config
now looks like this.

Figure 11.15

MACVLAN uses standard Linux sub-interfaces, and you tag them with the ID of the
VLAN they will connect to. In this example, we’re connecting to VLAN 100, so we tag
the sub-interface with .100 (-o parent=eth0.100).

We also used the --ip-range flag to tell the MACVLAN network which sub-set of IP
addresses it can assign to containers. It’s vital that this range of addresses is reserved for
Docker and not in use by other nodes or DHCP servers as the MACVLAN driver has no
management plane feature to check for overlapping IP ranges.

The macvlan100 network is ready for containers, so let’s deploy one with the following
command.
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$ docker run -d --name mactainer1 \
--network macvlan100 \
alpine sleep 1d

The config now looks like Figure 11.16. But remember, the underlying network (VLAN
100) does not see any of the MACVLANmagic, it only sees the container with its
MAC and IP addresses. This means the “mactainer1” container will be able to ping and
communicate with any other systems on VLAN 100. Pretty sweet!

Note: If you can’t get this to work, it might be because the host NIC is not
in promiscuous mode. Remember that public cloud platforms don’t usually
allow promiscuous mode.

Figure 11.16

At this point, we’ve got a MACVLAN network and used it to connect a new container
to an existing VLAN. However, it doesn’t stop there. The Docker MACVLAN driver is
built on top of the tried-and-tested Linux kernel driver with the same name. As such, it
supports VLAN trunking. This means we can create multiple MACVLAN networks and
connect containers on the same Docker host to them as shown in Figure 11.17.
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Figure 11.17

Container and Service logs for troubleshooting

A quick note on troubleshooting connectivity issues before moving on to Service
Discovery.

If you think you’re experiencing connectivity issues between containers, it’s worth
checking the Docker daemon logs as well as container logs.

On Windows systems, daemon logs are stored under ∼AppData\Local\Docker and
you can view them in the Windows Event Viewer. On Linux, it depends which init
system you’re using. If you’re running a systemd, logs will go to journald and you can
view them with the journalctl -u docker.service command. If you’re not running
systemd you should look under the following locations:

• Ubuntu systems running upstart: /var/log/upstart/docker.log

• RHEL-based systems: /var/log/messages

• Debian: /var/log/daemon.log

You can also tell Docker how verbose you want daemon logging to be. To do this, edit
the daemon config file (/etc/docker/daemon.json) so that “debug” is set to “true” and
“log-level” is set to one of the following:
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• debug The most verbose option

• info The default value and second-most verbose option

• warn Third most verbose option

• error Fourth most verbose option

• fatal Least verbose option

The following snippet from a daemon.json enables debugging and sets the level to
debug. It will work on all Docker platforms.

{
<Snip>
"debug":true,
"log-level":"debug",
<Snip>

}

If the daemon.json file doesn’t exist, create it! Also, be sure to restart Docker after
making changes to the file.

That was the daemon logs. What about container logs?

Logs from standalone containers can be viewed with the docker logs command, and
Swarm service logs can be viewed with the docker service logs command. However,
Docker supports lots of logging drivers and they don’t all work with the Docker log
commands.

As well as a driver and configuration for daemon logs, every Docker host has a default
logging driver and configuration for containers. Some of the drivers include:

• json-file (default)

• journald (only works on Linux hosts running systemd)

• syslog

• splunk

• gelf

json-file and journald are probably the easiest to configure and they both work with
docker logs and docker service logs.

If you’re using other logging drivers, you can view logs using the 3rd-party platform’s
native tools.

The following snippet from a daemon.json shows a Docker host configured to use
syslog.
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{
"log-driver": "syslog"

}

You can configure an individual container, or service, to start with a particular logging
driver with the --log-driver and --log-opts flags. These will override anything set in
daemon.json.

Container logs work on the premise that your application is running as PID 1 inside
the container, sending logs to STDOUT, and sending errors to STDERR. The logging driver
then forwards these “logs” to the locations configured via the logging driver.

The following is an example of running the docker logs command against a container
called “vantage-db” configured to use the json-file logging driver.

$ docker logs vantage-db
1:C 2 Feb 09:53:22.903 # oO0OoO0OoO0Oo Redis is starting oO0OoO0OoO0Oo
1:C 2 Feb 09:53:22.904 # Redis version=4.0.6, bits=64, commit=00000000, modified=0, pid=1
1:C 2 Feb 09:53:22.904 # Warning: no config file specified, using the default config.
1:M 2 Feb 09:53:22.906 * Running mode=standalone, port=6379.
1:M 2 Feb 09:53:22.906 # WARNING: The TCP backlog setting of 511 cannot be enforced because...
1:M 2 Feb 09:53:22.906 # Server initialized
1:M 2 Feb 09:53:22.906 # WARNING overcommit_memory is set to 0!

There’s a good chance you’ll find network connectivity errors reported in the daemon
logs or container logs.

Service discovery

As well as core networking, libnetwork also provides important network services.

Service discovery allows all containers and Swarm services to locate each other by name.
The only requirement is that they be on the same network.

Under the hood, this leverages Docker’s embedded DNS server and the DNS resolver in
each container. Figure 11.18 shows container “c1” pinging container “c2” by name. The
same principle applies to Swarm Services.
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Figure 11.18

Let’s step through the process.

• Step 1: The ping c2 command invokes the local DNS resolver to resolve the name
“c2” into an IP address. All Docker containers have a local DNS resolver.

• Step 2: If the local resolver doesn’t have an IP address for “c2” in its local cache,
it initiates a recursive query to the Docker DNS server. The local resolver is pre-
configured to know how to reach the Docker DNS server.

• Step 3: The Docker DNS server holds name-to-IP mappings for all containers
created with the --name or --net-alias flags. This means it knows the IP address
of container “c2”.

• Step 4: The DNS server returns the IP address of “c2” to the local resolver in
container “c1”. It does this because the two containers are on the same network
— if they were on different networks this would not work.

• Step 5: The ping command issues the ICMP echo request packets to the IP address
of “c2”.

Every Swarm service and standalone container started with the --name flag will register
its name and IP with the Docker DNS service. This means all containers and service
replicas can use the Docker DNS service to find each other. However, service discovery
is network-scoped, meaning name resolution only works for containers and Services on
the same network. If two containers are on different networks, they will not be able to
resolve each other.

One last point on service discovery and name resolution…

It’s possible to configure Swarm services and standalone containers with customized
DNS options. For example, the --dns flag lets you specify a list of custom DNS servers
to use in case the embedded Docker DNS server cannot resolve a query. This is common
when querying names of services outside of Docker. You can also use the --dns-search
flag to add custom search domains for queries against unqualified names (i.e., when the
query isn’t a fully qualified DNS name).

This works on Linux by adding entries to the /etc/resolv.conf of every container.
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The following example will start a new standalone container and add the infamous
8.8.8.8 Google DNS server, as well as nigelpoulton.com as search domain for
unqualified queries. Do not run this command, it’s just to show you how the options
look.

$ docker run -it --name c1 \
--dns=8.8.8.8 \
--dns-search=nigelpoulton.com \
alpine sh

Ingress load balancing

Swarm supports two network publishing modes that make services accessible outside of
the cluster:

• Ingress mode (default)

• Host mode

Services published via ingress mode can be accessed from any node in the Swarm—
even nodes not running a service replica. Services published via host mode can only be
accessed by hitting nodes running service replicas. Figure 11.19 shows the difference
between the two modes.
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Figure 11.19

Ingress mode is the default. This means any time you publish a service with -p or --
publish it will default to ingress mode. To publish a service in host mode you need to use
the long format of the --publish flag and add mode=host. The following example uses
host mode.

$ docker service create -d --name svc1 \
--publish published=5001,target=80,mode=host \
nginx

A few notes about the command. docker service create lets you publish a service
using either a long form syntax or short form syntax. The short form looks like this: -p
5001:80 and we’ve seen it a few times already. However, you cannot publish a service
in host mode using short form.

Long form looks like this: --publish published=5001,target=80,mode=host. It’s
a comma-separate list with no whitespace after each comma. The options work as
follows:

• published=5001makes the service available externally via port 5001

• target=80makes sure requests hitting the published port get mapped back to
port 80 on the service replicas
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• mode=hostmakes sure requests will only reach the service if they arrive on nodes
running a service replica.

Ingress mode is what you’ll normally use.

Behind the scenes, ingress mode uses a layer 4 routing mesh called the service mesh or
the swarm-mode service mesh. Figure 11.20 shows the basic traffic flow of an external
request hitting the cluster for a service exposed in ingress mode.

Figure 11.20

Let’s quickly walk through the diagram.

1. The command at the top deploys a new Swarm service called “svc1”. It’s attaching
the service to the overnet network and publishing it on port 5001.

2. Publishing a Swarm service like this (--publish published=5001,target=80)
will publish it on the ingress network. As all nodes in a Swarm are attached to the
ingress network meaning the port is published swarm-wide.

3. Logic is implemented on the cluster ensuring that any traffic hitting the ingress
network, via any node, on 5001 will be routed to the “svc1” replicas on port 80.

4. At this point, a single replica for the “svc1” service is deployed.

5. The red line shows traffic hitting node1 on the published port and being routed to
the service replica running on node2 via the ingress network.

It’s vital to know that the incoming request can arrive on any of the four Swarm nodes
we’ll get the same result.

It’s also important to know that if there are multiple replicas, as shown in Figure 11.21,
traffic will be balanced across them all.
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Figure 11.21

Docker Networking - The Commands

Docker networking has its own docker network sub-command. The main commands
include:

• docker network ls: Lists all networks on the local Docker host.
• docker network create: Creates new Docker networks. By default, it creates
them with the nat driver on Windows and the bridge driver on Linux. You can
specify the driver (type of network) with the -d flag. docker network create -d
overlay overnet will create a new overlay network called overnet with the native
Docker overlay driver.

• docker network inspect: Provides detailed configuration information about a
Docker network. Same as docker inspect.

• docker network prune: Deletes all unused networks on a Docker host.
• docker network rm: Deletes specific networks on a Docker host.

Chapter Summary

The Container Network Model (CNM) is the design document for Docker networking
and defines the three major constructs that are used to build Docker networks —
sandboxes, endpoints, and networks.

libnetwork is the reference implementation of the CMN. It’s an open-source project
that lives in the Moby project. It’s used by Docker and is where all of the core Docker
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networking code lives. It also provides network control plane and management plane
services such as service discovery.

Drivers extend libnetwork by implementing specific network types such as bridge
networks and overlay networks. Docker ships with built-in drivers, but you can also use
3rd-party drivers.

Single-host bridge networks are the most basic type of Docker network and are suitable
for local development and very small applications. They do not scale and they require
port mappings if you want to publish your services outside of the network.

Overlay networks are all the rage and are excellent container-only multi-host networks.
We’ll talk about them in-depth in the next chapter.

The macvlan driver allows us to connect containers to existing physical networks and
VLANs. They make containers first-class citizens by giving them their ownMAC and
IP addresses. Unfortunately, they require promiscuous mode on the host NIC, meaning
they won’t work in the public cloud.

Docker also uses libnetwork to implement service discovery and an ingress routing
mesh for container-based load balancing of ingress traffic.
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Overlay networks are at the center of most cloud-native microservices apps. In this
chapter we’ll get you up-to-speed with overlay networking on Docker.

Docker overlay networking on Windows has feature parity with Linux. This means the
examples we’ll use in this chapter will all work on Linux and Windows.

We’ll split this chapter into the usual three parts:

• The TLDR

• The deep dive

• The commands

Let’s do some networking magic.

Docker overlay networking - The TLDR

In the real world, it’s vital that containers can communicate reliably and securely, even
when they’re on different hosts that are on different networks. This is where overlay
networks come into play. They create a flat, secure, layer 2 networks spanning multiple
hosts. Containers on different hosts can connect to the same overlay network and
communicate directly.

Docker offers native overlay networking that is simple to configure and secure by
default.

Behind the scenes, it’s built on top of libnetwork and the native overlay driver.
Libnetwork is the canonical implementation of the Container Network Model (CNM)
and the overlay driver implements all of the network machinery.

Docker overlay networking - The deep dive

In March 2015, Docker, Inc. acquired a container networking startup called Socket Plane.
Two of the reasons behind the acquisition were to bring real networking to Docker, and
to make container networking simple enough that even developers could do it.



190 12: Docker overlay networking

They over-achieved on both, and overlay networking continues to be at the heart of
container networking in 2023 and for the foreseeable future.

However, hiding behind a few simple networking commands is a lot of complexity.
The kind of stuff you need to understand before doing production deployments and
attempting to troubleshoot issues.

The rest of this section will be broken into two parts:

• Building and testing Docker overlay networks

• Overlay networks explained

Building and testing Docker overlay networks

The following examples will use two Docker nodes configured as a swarm. The nodes
are on two separate networks connected by a router.

If you’re following along, it’s not vital that the nodes are on separate networks con-
nected by a router, but they can be. All that is required is that both nodes are running
Docker, have network connectivity, and can be configured into a swarm. This means
you can follow along on Play with Docker, a couple of Multipass VMs on your local
machine, or in the public cloud.

Following along on Docker Desktop is possible, but you won’t get the full experience as
you’ll only have access to a single node.

The initial configuration is shown in See Figure 12.1. Everything will work if your
nodes are on the same network, it just means your underlay network is simpler. We’ll
explain underlay networks later.

Figure 12.1
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Build a Swarm

The first thing to do is configure the two nodes into a swarm. This is because swarm
mode is a pre-requisite for Docker overlay networks.

We’ll run a docker swarm init command on node1 to make it a manager, then we’ll run
a docker swarm join command on node2 to make it a worker. This isn’t a production-
grade setup, but it is enough for a learning lab. You’re encouraged to test with more
managers and workers and expand on the examples.

If you’re following along in your own lab, you’ll need to substitute the IP addresses and
names with the correct values for your environment. You’ll also need to ensure nothing
is blocking the following ports between the two nodes:

• 2377/tcp for management plane comms

• 7946/tcp and 7946/udp for control plane comms (SWIM-based gossip)

• 4789/udp for the VXLAN data plane

Run the following command on node1.

$ docker swarm init \
--advertise-addr=172.31.1.5 \
--listen-addr=172.31.1.5:2377

Swarm initialized: current node (1ex3...o3px) is now a manager.

Copy the docker swarm join command included in the output and paste it into a
terminal on node2.

$ docker swarm join \
--token SWMTKN-1-0hz2ec...2vye \
172.31.1.5:2377

This node joined a swarm as a worker.

We now have a two-node Swarm with node1 as a manager and node2 as a worker.

Create a new overlay network

Let’s create a new overlay network called uber-net.

Run the following command from node1 (manager).
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$ docker network create -d overlay uber-net
c740ydi1lm89khn5kd52skrd9

That’s it. You’ve just created a brand-new overlay network that’s available to all hosts
in the swarm and has its control plane encrypted with TLS (AES in GCMmode with
keys automatically rotated every 12 hours). If you want to encrypt the data plane, you
just add the -o encrypted flag to the command. However, data plane encryption isn’t
enabled by default because of the performance overhead. Be sure to test performance
before enabling data plane encryption in your production environments. However, if
you do enable it, it’s protected by the same AES in GCMmode with key rotation.

If you’re unsure about terms such as control plane and data plane… control plane traffic is
cluster management traffic, whereas data plane traffic is application traffic. By default,
Docker overlay networks encrypt cluster management traffic but not application traffic.
You must explicitly enable encryption of application traffic.

You can list all networks on each node with the docker network ls command.

$ docker network ls
NETWORK ID NAME DRIVER SCOPE
ddac4ff813b7 bridge bridge local
389a7e7e8607 docker_gwbridge bridge local
a09f7e6b2ac6 host host local
ehw16ycy980s ingress overlay swarm
2b26c11d3469 none null local
c740ydi1lm89 uber-net overlay swarm

The newly created network is at the bottom of the list called uber-net. The other
networks were automatically created when Docker was installed and when the swarm
was initialized.

If you run the docker network ls command on node2, you’ll notice that it doesn’t
show the uber-net network. This is because new overlay networks are only extended
to worker nodes when the worker is tasked with running a container on the network.
This lazy approach to extending overlay networks improves scalability by reducing the
amount of network gossip.

Attach a service to the overlay network

Now that we have an overlay network, let’s attach a new Docker service to it. The example
will create the service with two replicas so that one runs on node1 and the other runs on
node2. This will automatically extend the uber-net overlay to node2

Run the following commands from node1.
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$ docker service create --name test \
--network uber-net \
--replicas 2 \
ubuntu sleep infinity

The command creates a new service called test and attaches both replicas to the uber-
net overlay network. Because we’re running two replicas on a two-node swarm, one will
be scheduled to each node.

Verify the operation with a docker service ps command.

$ docker service ps test
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE
77q...rkx test.1 ubuntu node1 Running Running
97v...pa5 test.2 ubuntu node2 Running Running

Run a docker network ls on node2 to verify it can now see the network.

Standalone containers that are not part of a swarm service cannot attach to overlay
networks unless the network was created with the attachable=true property. The
following command can be used to create an attachable overlay network that standalone
containers can connect to.

$ docker network create -d overlay --attachable uber-net

Congratulations. You’ve created a new overlay network spanning two nodes on separate
physical underlay networks. You’ve also attached two containers to it. How easy was
that!

You’ll fully appreciate the simplicity of what you’ve done when your head explodes in
the theory section and you realise the outrageous complexity of what’s going on behind
the scenes!

Test the overlay network

Let’s test the overlay network with the ping command.

As shown in Figure 12.2, we’ve got two Docker hosts on separate networks, and a single
overlay network spanning both. We’ve also got a container connected to the overlay
network on each node. Let’s see if they can ping each other.
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Figure 12.2

You can perform the test by pinging the remote container by name. However, the
examples will use IP addresses as it gives us an excuse to learn how to find container IP
addresses.

Run a docker inspect to see the subnet assigned to the overlay and the IP addresses
assigned to the two test service replicas.

$ docker inspect uber-net
[

{
"Name": "uber-net",
"Id": "c740ydi1lm89khn5kd52skrd9",
"Scope": "swarm",
"Driver": "overlay",
"EnableIPv6": false,
"IPAM": {

"Driver": "default",
"Options": null,
"Config": [

{
"Subnet": "10.0.0.0/24", <<---- Subnet info
"Gateway": "10.0.0.1" <<---- Subnet info

}
"Containers": {

"Name": "test.1.mfd1kn0qzgosu2f6bhfk5jc2p", <<---- Container name
"IPv4Address": "10.0.0.3/24", <<---- Container IP
<Snip>

},
"Name": "test.2.m49f4psxp3daixlwfvy73v4j8", <<---- Container name
"IPv4Address": "10.0.0.4/24", <<---- Container IP

},
<Snip>
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The output is heavily snipped for readability, but we can see it shows uber-net’s subnet
is 10.0.0.0/24. This doesn’t match either of the physical underlay networks shown in
Figure 12.2 (172.31.1.0/24 and 192.168.1.0/24). You can also see the IP addresses
assigned to the two containers.

Run the following two commands on both nodes. The first command gets the replica’s
container ID, the second gets the container’s IP address. Be sure to use the container IDs
from your own lab in the second command.

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS NAME
396c8b142a85 ubuntu:latest "sleep infinity" 2 hours ago Up 2 hrs test.1.mfd...

$ docker inspect \
--format='{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' 396c8b142a85

10.0.0.3

See how the names and IPs match the output from the docker inspect command.

Figure 12.3 shows the configuration so far. Subnet and IP addresses may be different in
your lab.

Figure 12.3

As you can see, there’s a Layer 2 overlay network spanning both nodes and each
container has an IP address on it. This means the container on node1 will be able to
ping the container on node2 using its 10.0.0.4 address. This works despite the fact that
both nodes are on different layer 2 underlay networks.

Let’s prove it.

Log on to the container on node1 and ping the remote container. You’ll need to install
the ping utility in the container to complete this task. Remember that the container IDs
will be different in your environment.



196 12: Docker overlay networking

$ docker exec -it 396c8b142a85 bash

# apt-get update && apt-get install iputils-ping -y
<Snip>
Reading package lists... Done
Building dependency tree
Reading state information... Done
<Snip>
Setting up iputils-ping (3:20190709-3) ...
Processing triggers for libc-bin (2.31-0ubuntu9) ...

# ping 10.0.0.4
PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data.
64 bytes from 10.0.0.4: icmp_seq=1 ttl=64 time=1.06 ms
64 bytes from 10.0.0.4: icmp_seq=2 ttl=64 time=1.07 ms
64 bytes from 10.0.0.4: icmp_seq=3 ttl=64 time=1.03 ms
64 bytes from 10.0.0.4: icmp_seq=4 ttl=64 time=1.26 ms
^C

Congratulations. The container on node1 can ping the container on node2 via the
overlay network. If you created the network with the -o encrypted flag, the exchange
will have been encrypted.

You can also trace the route of the ping command from within the container. This
will report a single hop, proving that the containers are communicating directly via
the overlay network — blissfully unaware of any underlay networks that are being
traversed.

You’ll need to install traceroute in the container for this to work.

# apt install inetutils-traceroute
<Snip>

# traceroute 10.0.0.4
traceroute to 10.0.0.4 (10.0.0.4), 30 hops max, 60 byte packets
1 test-svc.2.97v...a5.uber-net (10.0.0.4) 1.110ms 1.034ms 1.073ms

So far, we’ve created an overlay network with a single command. Then we added
containers to it. The containers were scheduled on two hosts on two different layer
2 underlay networks. We located the container’s IP addresses and proved they could
communicate directly via the overlay network.

Now that we’ve seen how easy it is to build and use a secure overlay network, let’s find
out how it’s all put together behind the scenes.



197

Overlay networks explained

First and foremost, Docker overlay networking uses VXLAN tunnels to create virtual
layer 2 overlay networks. So, before we go any further, let’s do a quick VXLAN primer.

VXLAN primer

At the highest level, VXLANs let you create layer 2 networks on top of an existing layer
3 infrastructure. That’s a lot of jargon that means you can create simple networks that
hide horrifically complex network topologies. The example we used earlier created a
new 10.0.0.0/24 layer 2 network on top of a layer 3 IP network comprising two other
layer 2 networks connected by a router. See Figure 12.4.

Figure 12.4

The beauty of VXLAN is that it’s an encapsulation technology. This means existing
routers and network infrastructure just see it as regular IP/UDP packets and handle
without requiring any changes.

To create the overlay, a VXLAN tunnel is created through the underlay networks.
The tunnel is what allows traffic to flow freely without having to interact with the
complexity of the underlay networks. We use the terms underlay networks or underlay
infrastructure to refer to the networks the overlay has to tunnel through.

Each end of the VXLAN tunnel is terminated by a VXLAN Tunnel Endpoint (VTEP).
It’s this VTEP that encapsulates and de-encapsulates the traffic entering and exiting the
tunnel. See Figure 12.5.
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Figure 12.5

This image shows the layer 3 infrastructure as a cloud for two reasons:

• It can be a lot more complex than two networks and a single router as shown in
previous diagrams

• The VXLAN tunnel abstracts the complexity and makes it opaque

Walk through our two-container example

The hands-on examples from earlier had two hosts connected via an IP network. Each
host ran a single container and you created a single overlay network for the containers.
However, lots of things happened behind the scenes to make this happen…

A new sandbox (network namespace) was created on each host.

A virtual switch called Br0was created inside the sandboxes. A VTEP is also created
with one end plumbed into the Br0 virtual switch and the other end plumbed into
the host network stack. The end in the host network stack gets an IP address on the
underlay network the host is connected to and is bound to a UDP socket on port 4789.
The two VTEPs on each host create the overlay via a VXLAN tunnel as seen in Figure
12.6.
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Figure 12.6

At this point, the VXLAN overlay is created and ready for use.

Each container then gets its own virtual Ethernet (veth) adapter that is also plumbed
into the local Br0 virtual switch. The final topology looks like Figure 12.7, and although
it’s complex, it should be getting easier to see how the two containers can communicate
over the VXLAN overlay despite their hosts being on two separate networks.

Figure 12.7
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Communication example

Now that we’ve seen the main plumbing elements, let’s see how the two containers
communicate.

Warning! This section gets very technical. However, you don’t need to
understand it all for day-to-day operations.

For this example, we’ll call the container on node1 “C1” and the container on node2 “C2”.
And let’s assume C1 wants to ping C2 like we did in the practical example earlier. Figure
12.8 adds the containers and their IPs.

Figure 12.8

C1 creates the ping requests and sets the destination IP address to be the 10.0.0.4
address of C2.

C1 doesn’t have an entry for C2 in its local MAC address table (ARP cache) so it floods
the packet on all interfaces. The VTEP interface is connected to Br0which knows how
to forward the frame, so responds with its ownMAC address. This is a proxy ARP reply
and results in the VTEP learning how to forward the packet and updating its MAC table
so that all future packets for C2 will be transmitted directly to the local VTEP. The Br0
switch knew about C2 because all newly started containers have their network details
propagated to other nodes in the swarm using the network’s built-in gossip protocol.

The ping is sent to the VTEP interface which performs the encapsulation required to
tunnel it through the underlay networks. At a fairly high level, this encapsulation adds
a VXLAN header to individual Ethernet frames. This header contains the VXLAN
network ID (VNID) which is used to map frames from VLANs to VXLANs and vice
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versa. Each VLAN gets mapped to VNID so that packets can be de-encapsulated on the
receiving end and forwarded to the correct VLAN. This maintains network isolation.

The encapsulation also wraps the frame in a UDP packet and adds the IP of the remote
VTEP on node2 in the destination IP field. It also adds the UDP port 4789 socket infor-
mation. This encapsulation allows the packets to be sent across the underlay networks
without the underlays having to know anything about VXLAN.

When the packet arrives at node2, the kernel sees it’s addressed to UDP port 4789. The
kernel also knows it has a VTEP bound to this socket. As a result, it sends the packet to
the VTEP, which reads the VNID, de-encapsulates the packet, and sends it on to its own
local Br0 switch on the VLAN corresponding the VNID. From there it is delivered to
container C2.

And that… my friends… is how VXLAN technology is leveraged by native Docker
overlay networking — a whole load of mind-blowing complexity beautifully simplified
with a couple of Docker commands.

Hopefully that’s enough to get you started with any production Docker deployments.
It should also give you the knowledge required to talk to your networking team about
the networking aspects of your Docker infrastructure. On the topic of talking to your
networking team… I recommend you don’t approach them thinking that you now know
everything about VXLAN. If you do, you’ll probably embarrass yourself. I’m speaking
from experience ;-)

One final thing. Docker also supports Layer 3 routing within an overlay network. For
example, you can create an overlay network with two subnets and Docker will take care
of routing between them. The command to create a network like this could be docker
network create --subnet=10.1.1.0/24 --subnet=11.1.1.0/24 -d overlay prod-
net. This would result in two virtual switches, Br0 and Br1, inside the sandbox and
routing happens by automatically.

Docker overlay networking - The commands

• docker network create is the command we use to create a new container
network. The -d flag specifies the driver to use, and the most common driver
is overlay. You can also install and use drivers from 3rd parties. For overlay
networks, the control plane is encrypted by default. You can encrypt the data plane
by adding the -o encrypted flag but performance overhead might be incurred.

• docker network ls lists all of the container networks visible to a Docker host.
Docker hosts running in swarm mode only see overlay networks if they are running
containers attached to those networks. This keeps network-related gossip to a
minimum.
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• docker network inspect shows detailed information about a particular container
network. This includes scope, driver, IPv4 and IPv6 info, subnet configuration, IP
addresses of connected containers, VXLAN network ID, and encryption state.

• docker network rm deletes a network

Chapter Summary

In this chapter, we saw how easy it is to create new Docker overlay networks with the
docker network create command. We then learned how they are put together behind
the scenes using VXLAN technology.



13: Volumes and persistent data
Stateful applications that persist data are more and more important in the world of
cloud-native and microservices applications. So, we’ll turn our attention in this chapter
to investigating how Docker handles applications that write persistent data.

We’ll split the chapter into the usual three parts:

• The TLDR

• The deep dive

• The commands

Volumes and persistent data - The TLDR

There are two main categories of data — persistent and non-persistent.

Persistent is the data we need to keep. Things like customer records, financial data,
research results, audit logs, and even some types of application log data. Non-persistent
is the data we don’t need to keep.

Both are important, and Docker has solutions for both.

To deal with non-persistent data, every Docker container gets its own non-persistent
storage. This is automatically created for every container and is tightly coupled to the
lifecycle of the container. As a result, deleting the container will delete the storage and
any data on it.

To deal with persistent data, containers need to store it in a volume. Volumes are separate
objects that have their lifecycles decoupled from containers. This means you can create
and manage volumes independently, and they don’t get deleted when their container is
deleted.

That’s the TLDR. Let’s take a closer look.

Volumes and persistent data - The Deep Dive

Some people still think containers aren’t good for stateful applications that persist data.
This was true a few years ago. However, things have changed and containers are now
excellent choices for apps that create persistent data.
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We’re about to see some of the ways that containers deal with persistent and non-
persistent data, and you’ll see lots of similarities with virtual machines.

We’ll start out with non-persistent data.

Containers and non-persistent data

Containers are designed to be immutable. This is jargon that means read-only — it’s
a best practice not to change the configuration of a container after it’s deployed. If
something breaks or you need to change something, you create a brand-new container
with the fixes or updates and replace the old container with this new one. You should
never log into a running container and make configuration changes.

However, many applications require a read-write filesystem in order to run – they won’t
even run on a read-only filesystem. This means it’s not as simple as making containers
entirely read-only. To help with this, containers created by Docker have a thin read-
write layer on top of the read-only images they’re based on. Figure 13.1 shows two
running containers sharing a single read-only image.

Figure 13.1 Ephemeral container storage

Each writable container layer exists in the filesystem of the Docker host and you’ll hear
it called various names. These include local storage, ephemeral storage, and graphdriver
storage. It’s typically located on the Docker host in these locations:

• Linux Docker hosts: /var/lib/docker/<storage-driver>/...

• Windows Docker hosts: C:\ProgramData\Docker\windowsfilter\...

This thin writable layer is an integral part of many containers and enables all read/write
operations. If you, or an application, update files or add new files, they’ll be written
to this layer. However, it’s tightly coupled to the container’s lifecycle — it gets created
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when the container is created and it gets deleted when the container is deleted. The fact
that it’s deleted along with a container means it’s not an option for important data that
you need to keep (persist).

If your containers don’t create persistent data, this thin writable layer of local storage will
be fine and you’re good to go. However, if your containers need to persist data, you need
to read the next section.

Containers and persistent data

Volumes are the recommended way to persist data in containers. There are three major
reasons for this:

• Volumes are independent objects that are not tied to the lifecycle of a container

• Volumes can be mapped to specialized external storage systems

• Volumes enable multiple containers on different Docker hosts to access and share
the same data

At a high-level, you create a volume, then you create a container and mount the volume
into it. The volume is mounted into a directory in the container’s filesystem, and
anything written to that directory is stored in the volume. If you delete the container,
the volume and its data will still exist.

Figure 13.2 shows a Docker volume existing outside of the container as a separate object.
It is mounted into the container’s filesystem at /data, and any data written to the /data
directory will be stored on the volume and will exist after the container is deleted.

Figure 13.2 High-level view of volumes and containers

In Figure 13.2, the /data directory is a Docker volume that can either be mapped to
an external storage system or a directory on the Docker host. Either way, its lifecycle
is decoupled from the container. All other directories in the container use the thin
writable container layer in the local storage area on the Docker host.
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Creating and managing Docker volumes

Volumes are first-class objects in Docker. Among other things, this means they are their
own object in the API and have their own docker volume sub-command.

Use the following command to create a new volume called myvol.

$ docker volume create myvol
myvol

By default, Docker creates new volumes with the built-in local driver. As the name
suggests, volumes created with the local driver are only available to containers on the
same node as the volume. You can use the -d flag to specify a different driver.

Third-party volume drivers are available as plugins14. These provide Docker with
advanced features and seamless access external storage systems such as cloud storage
services and on-premises storage systems including SAN and NAS. This is shown in
Figure 13.3.

Figure 13.3 Plugging external storage into Docker

We’ll look at an example with a third-party driver in a later section.

Now that the volume is created, you can see it with the docker volume ls command
and inspect it with the docker volume inspect command.

14https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins

https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins
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$ docker volume ls
DRIVER VOLUME NAME
local myvol

$ docker volume inspect myvol
[

{
"CreatedAt": "2023-05-23T10:00:18+01:00",
"Driver": "local",
"Labels": null,
"Mountpoint": "/var/lib/docker/volumes/myvol/_data",
"Name": "myvol",
"Options": null,
"Scope": "local"

}
]

Notice that the Driver and Scope are both local. This means the volume was created
with the local driver and is only available to containers on this Docker host. The
Mountpoint property tells us where in the Docker host’s filesystem the volume exists.

All volumes created with the local driver get their own directory under /var/lib/-
docker/volumes on Linux, and C:\ProgramData\Docker\volumes on Windows. This
means you can see them in your Docker host’s filesystem. You can even access them
directly from your Docker host, although this is not recommended. We showed an
example of this in the chapter on Docker Compose — we copied a file directly into a
volume’s directory on the Docker host and the file immediately appeared in the volume
inside the container.

Now that the volume is created, it can be used by one or more containers. We’ll see
usage examples in a minute.

There are two ways to delete a Docker volume:

• docker volume prune

• docker volume rm

docker volume prune will delete all volumes that are not mounted into a container or
service replica, so use with caution! docker volume rm lets you specify exactly which
volumes you want to delete. Neither command will delete a volume that is in use by a
container or service replica.

As the myvol volume is not in use, delete it with the prune command.
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$ docker volume prune

WARNING! This will remove all volumes not used by at least one container.
Are you sure you want to continue? [y/N] y

Deleted Volumes:
myvol
Total reclaimed space: 0B

Congratulations, you’ve created, inspected, and deleted a Docker volume. And you did
it all without interacting with a container. This demonstrates the independent nature of
volumes.

At this point, you know all the commands to create, list, inspect, and delete Docker
volumes. However, it’s also possible to deploy volumes via Dockerfiles using the VOLUME
instruction. The format is VOLUME <container-mount-point>. Interestingly, you cannot
specify a directory on the host when defining a volume in a Dockerfile. This is because
host directories are different depending on what OS your Docker host is running – it
could break your builds if you specified a directory on a Docker host that doesn’t exist.
As a result, defining a volume in a Dockerfile requires you to specify host directories at
deploy-time.

Demonstrating volumes with containers and services

Let’s see how to use volumes with containers and services.

Use the following command to create a new standalone container that mounts a volume
called bizvol.

$ docker run -it --name voltainer \
--mount source=bizvol,target=/vol \
alpine

The command uses the --mount flag to mount a volume called “bizvol” into the con-
tainer at either /vol. The command completes successfully despite the fact there is no
volume on the system called bizvol. This raises an interesting point:

• If you specify an existing volume, Docker will use the existing volume

• If you specify a volume that doesn’t exist, Docker will create it for you

In this case, bizvol didn’t exist, so Docker created it and mounted it into the new
container. This means you’ll be able to see it with docker volume ls.
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$ docker volume ls
DRIVER VOLUME NAME
local bizvol

Although containers and volumes have separate lifecycle’s, you cannot delete a volume
that is in use by a container. Try it.

$ docker volume rm bizvol
Error response from daemon: remove bizvol: volume is in use - [b44d3f82...dd2029ca]

The volume is brand new, so it doesn’t have any data. Let’s exec onto the container and
write some data to it.

$ docker exec -it voltainer sh

/# echo "I promise to leave a review of the book on Amazon" > /vol/file1

/# ls -l /vol
total 4
-rw-r--r-- 1 root root 50 May 23 08:49 file1

/# cat /vol/file1
I promise to leave a review of the book on Amazon

Type exit to return to the shell of your Docker host, and then delete the container with
the following command.

$ docker rm voltainer -f
voltainer

Even though the container is deleted, the volume still exists:

$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS

$ docker volume ls
DRIVER VOLUME NAME
local bizvol

As the volume still exists, you can look at its mount point on the host to check if the data
is still there.

Run the following commands from the terminal of your Docker host. The first one will
show that the file still exists, the second will show the contents of the file. You may have
to prefix the commands with sudo.

Be sure to use the C:\ProgramData\Docker\volumes\bizvol\_data directory if you’re
following along on Windows. Also, this step won’t work on Docker Desktop because
Docker Desktop runs your entire Docker environment inside a VM.
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$ ls -l /var/lib/docker/volumes/bizvol/_data/
total 4
-rw-r--r-- 1 root root 50 Jan 12 14:25 file1

$ cat /var/lib/docker/volumes/bizvol/_data/file1
I promise to leave a review of the book on Amazon

Great, the volume and the data still exist.

It’s even possible to mount the bizvol volume into a new service or container. The
following command creates a new container that mounts bizvol at /vol.

$ docker run -it \
--name hellcat \
--mount source=bizvol,target=/vol \
alpine sh

Your terminal is now attached to the hellcat container.

# cat /vol/file1
I promise to write a review of the book on Amazon

Excellent, the volume has preserved the original data and made it available to a new
container.

Type exit to leave the container and jump over to Amazon to leave the book review :-D

Sharing storage across cluster nodes

Integrating external storage systems with Docker makes it possible to share volumes
between cluster nodes. These external systems can be cloud storage services or enter-
prise storage systems in your on-premises data centers. As an example, a single storage
LUN or NFS share can be presented to multiple Docker hosts, allowing it to be used by
containers and service replicas no-matter which Docker host they’re running on. Figure
13.4 shows a single external shared volume being presented to two Docker nodes. These
Docker nodes can then make the shared volume available to either, or both containers.
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Figure 13.4

Building a setup like this requires a lot of things. You need access to a specialised storage
systems and knowledge of how it works and presents storage. You also need to know
how your applications read and write data to the shared storage. Finally, you need a
volume driver plugin that works with the external storage system.

Volume drivers are available as plugins that run as containers, and the best place to find
them is Docker Hub. Just open a browser page to hub.docker.com and filter the view on
Plugins. Once you’ve located the appropriate plugin for your storage system, you install
it with docker plugin install.

Figure 13.5 shows the NetApp Trident plugin on Docker Hub. Notice the docker
plugin install command.
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Figure 13.5

Potential data corruption

A major concern with any configuration that shares a single volume among multiple
containers is data corruption.

Assume the following example based on Figure 13.4.

The application running in ctr-1 on node1 updates some data in the shared volume.
However, instead of writing the update directly to the volume, it keeps it in a local
buffer for faster recall (this is common in many operating systems). At this point, the
application in ctr-1 thinks the data has been written to the volume. However, before
ctr-1 on node1 flushes its buffers and commits the data to the volume, the app in ctr-
2 on node2 updates the same data with a different value and commits it directly to the
volume. At this point, both applications think they’ve updated the data in the volume,
but in reality, only the application in ctr-2 has. A few seconds later, ctr-1 on node1
flushes the data to the volume, overwriting the changes made by the application in ctr-
2. However, the application in ctr-2 is totally unaware of this! This is one of the ways
data corruption happens.

To prevent this, you need to write your applications in a way to avoid things like this.
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Volumes and persistent data - The Commands

• docker volume create is the command to create new volumes. By default,
volumes are created with the local driver but you can use the -d flag to specify
a different driver.

• docker volume ls will list all volumes on the local Docker host.

• docker volume inspect shows detailed volume information. Use this command
to see many interesting volume properties, including where a volume exists in the
Docker host’s filesystem.

• docker volume prune will delete all volumes that are not in use by a container or
service replica. Use with caution!

• docker volume rm deletes specific volumes that are not in use.

• docker plugin install installs new volume plugins from Docker Hub.

• docker plugin ls lists all plugins installed on a Docker host.

Chapter Summary

There are two main types of data: persistent and non-persistent.

Persistent data is data that you need to keep, non-persistent is data that you don’t need
to keep. By default, all containers get a layer of writable non-persistent storage that lives
and dies with the container — we call this local storage and it’s ideal for non-persistent
data. However, if your containers create data that you need to keep, you should store the
data in a Docker volume.

Docker volumes are first-class objects in the Docker API and managed independently
of containers with their own docker volume sub-command. This means that deleting a
container will not delete the volumes it was using.

Third party volume plugins can provide Docker access to specialised external storage
systems. They’re installed from Docker Hub with the docker plugin install com-
mand and are referenced at volume creation time with the -d command flag.

Volumes are the recommended way to work with persistent data in a Docker environ-
ment.
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Deploying and managing cloud-native microservices applications at scale is hard.

Fortunately, Docker Stacks are here to help.

We’ll split this chapter into the usual three parts:

• The TLDR

• The deep dive

• The commands

Deploying apps with Docker Stacks - The TLDR

Testing and deploying simple apps on your laptop is easy, but that’s for amateurs.
Deploying and managing multi-service apps in real-world production environments…
that’s for pros.

This is where Docker Stacks come into play. They let you define complex multi-service
apps in a single declarative file. They also provide a simple way to deploy and manage
entire application lifecycles — initial deployment > health checks > scaling > updates >
rollbacks and more.

The process is simple. Define what you want in a Compose file and deploy and manage it
with the docker stack command. That’s it!

The Compose file includes the entire stack of microservices that make up the app. It
also includes infrastructure such as volumes, networks, secrets, and more. The docker
stack deploy command is used to deploy and manage the entire app from that single
file. Simple.

To accomplish all of this, stacks build on top of Docker Swarm, meaning you get all of
the security and advanced features that come with Swarm.

In a nutshell, Docker is great for application development and testing. Docker Stacks are
great for scale and production.
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Deploying apps with Docker Stacks - The Deep Dive

If you know Docker Compose, you’ll find Docker Stacks really easy.

From and architecture perspective, stacks are at the top of the Docker application
hierarchy. They build on top of services, which in turn build on top of containers.

Figure 14.1

We’ll divide this section of the chapter as follows:

• Overview of the sample app

• Stack files

• Deploying stacks

• Managing stacks

Overview of the sample app

For the rest of the chapter, we’ll be using an application with two services, an encrypted
overlay network, a volume, and a port mapping. The application architecture is shown
in Figure 14.2.
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Figure 14.2

Terminology:When referring to services we’re talking about the Docker
service object that is one or more identical containers managed as a single
object on a swarm cluster.

If you haven’t already done so, clone the book’s GitHub repo so that you have all of the
application source files on your local machine.

$ git clone https://github.com/nigelpoulton/ddd-book.git
Cloning into 'ddd-book'...
remote: Enumerating objects: 8904, done.
remote: Counting objects: 100% (74/74), done.
remote: Compressing objects: 100% (52/52), done.
remote: Total 8904 (delta 21), reused 70 (delta 18), pack-reused 8830
Receiving objects: 100% (8904/8904), 74.00 MiB | 4.18 MiB/s, done.
Resolving deltas: 100% (1378/1378), done.

Feel free to look at the application. However, we’ll be focussing on the compose.yaml
file. Sometimes we’ll refer to the Compose file as the stack file, and sometimes we’ll refer
to the application as the stack.

At the highest level, the Compose defines 3 top-level keys.

networks:
volumes:
services:
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Networks defines the networks required by the app, volumes defines volumes, and
services is where you define the microservices that make up the app. The file is a simple
example of infrastructure as code— the application and its infrastructure is all defined in
a configuration that’s used to deploy and manage it.

If you expand each top-level key, you’ll see how things map to Figure 14.2 with one
network, one volume, and two services.

networks:
counter-net:

volumes:
counter-vol:

services:
web-fe:
redis:

The stack file is also a great source of documentation as it captures and defines most of
the app.

Let’s take a closer look at each section of the stack file.

Looking closer at the stack file

Stack files are almost identical to Compose files. The differences come at runtime –
Swarm and Stacks might support a different set of features than Compose. For example,
Stacks don’t support building images from Dockerfiles but Compose does.

One of the first things Docker does when deploying an app from a stack file is create the
required networks listed under the networks key. If the networks don’t already exist,
Docker creates them.

Let’s look at the networks and networking defined in our stack file.

Networks and networking

The sample app defines a single network called counter-net. We’re forcing it to be an
overlay network and we’re encrypting the data plane.

networks:
counter-net:
driver: overlay
driver_opts:

encrypted: 'yes'



219

It needs to be an overlay network so it can span all nodes in the swarm.

Encrypting the data ensures traffic is private. However, this incurs a performance
penalty that varies based on factors such as traffic type and traffic flow. It’s not uncom-
mon for the performance penalty to be around 10%, but you should perform extensive
testing against your particular applications.

The stack also defines a port mapping for the web-fe service:

services:
web-fe:
<Snip>
ports:

- target: 8080
published: 5001

This publishes port 5001 on the swarm-wide ingress network and redirects traffic to
port 8080 in any of the service replicas. This results in all traffic hitting any swarm node
on port 5001 being routed to port 8080 on the service replicas.

Let’s look at the volumes and mounts.

Volumes and mounts

The app defines a single volume called counter-vol and mounts it into the /app/
directory on all redis replicas. Any read or write operations to the /app folder will be
read and written to the volume.

volumes:
counter-vol:

services:
redis:
<Snip>
volumes:

- type: volume
source: counter-vol
target: /app

Let’s look at the services.

Services

Services are where most of the action happens.

Our application defines two and we’ll look at each in turn.
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The web-fe service

As you can see, the web-fe service defines an image, an app, a replica count, an update
configuration, a restart policy, a network, a published port, and a volume.

web-fe:
image: nigelpoulton/ddd-book:swarm-app
command: python app.py
deploy:
replicas: 10
update_config:

parallelism: 2
delay: 10s
failure_action: rollback

placement:
constraints:
- 'node.role == worker'

restart_policy:
condition: on-failure
delay: 5s
max_attempts: 3
window: 120s

networks:
- counter-net

ports:
- published: 5001

target: 8080
volumes:
- type: volume

source: counter-vol
target: /app

The image key is the only mandatory key in the service object and it defines the
image used to build the service replicas. Remember, a service is one or more identical
containers.

Docker is opinionated and assumes you want to pull images from Docker Hub. However,
you can use 3rd-party registries by adding the registry’s DNS name before the image
name. For example, adding gcr.io before an image name will pull it from Google’s
container registry.

One difference between Docker Stacks and Docker Compose is that stacks don’t
support builds. This means all images have to be built before we deploy the stack.

The command key defines the app to run in each replica. Our example is telling Docker
to run python app.py as the main process in every service replica.
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web-fe:
<Snip>
command: python app.py

The deploy.replicas key is telling swarm to deploy and manage 4 service replicas. All
replicas are identical other than names and IPs.

If you need to change the number of replicas after you’ve deployed the service, you
should do so declaratively. This means updating deploy.replicas field in the stack file
with the new value and then redeploying the stack. We’ll see this later, but re-deploying
a stack does not affect services that you haven’t made a change to.

web-fe:
deploy:
replicas: 4

The deploy.update_config block says to perform updates by updating two replicas
at a time, wait 10 seconds in between each set, and perform a rollback if the update
encounters a problem. Rolling back will start new replicas based on the previous
definition of the service. The default value for failure_action is pause, which will stop
further replicas being updated. The other option is continue.

web-fe:
deploy:
update_config:

parallelism: 2
delay: 10s
failure_action: rollback

The deploy.placement block forces all replicas onto worker nodes.

web-fe:
deploy:
placement:

constraints:
- 'node.role == worker'

The deploy.restart_policy block says to restart replicas if they fail. It also says to try a
maximum of 3 times, wait 5 seconds in-between each restart attempt, and wait up to
120 seconds to decide if the restart worked.
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web-fe:
deploy:
restart_policy:

condition: on-failure
max_attempts: 3
delay: 5s
window: 120s

The networks key tells swarm to attach all replicas to the counter-net network.

web-fe:
networks:
- counter-net

The ports block publishes the app on the ingress network on port 5001 and the counter-
net network on 8080. This ensures traffic hitting the swarm on 5001 gets redirected to
the service replicas on 8080.

web-fe:
ports:
- published: 5001

target: 8080

Finally, the volumes block mounts the counter-vol volume into /app in each service
replica.

web-fe:
volumes:
- type: volume

source: counter-vol
target: /app

The redis service

The redis service is much simpler. It pulls the redis:alpine image, starts a single
replica, and attaches it to the counter-net network. This is the same network as the
web-fe service, meaning the two services will be able to communicate with each other
by name (“redis” and “web-fe”).
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redis:
image: "redis:alpine"
networks:
counter-net:

As mentioned previously, Compose files are a great source of application documenta-
tion. We know this application has 2 services, 2 networks, and 1 volume. We know how
the services communicate, how they’re exposed outside of the swarm, and we know a bit
about how they’ll be deployed, updated, and how they’ll restart from failures.

Let’s deploy the app.

Deploying the app

We’ll deploy the app as a Docker Stack. This means our Docker nodes need to be
configured as a swarm.

Building a lab for the sample app

In this section we’ll build a three-node swarm. You can follow along on Play with
Docker, Multipass VMs or just about any Docker environment. You can even follow
along on Docker Desktop. However, Docker Desktop is limited to a single node running
as a manager, meaning you’ll have to delete the node role constraint:

web-fe:
deploy:
placement: <<---- Delete if using Docker Desktop
constraints: <<---- Delete if using Docker Desktop
- 'node.role == worker' <<---- Delete if using Docker Desktop

1. Initialize a new Swarm.

Run the following command on the node that you want to be the swarm manager.

$ docker swarm init
Swarm initialized: current node (lhma...w4nn) is now a manager.
<Snip>

2. Add worker nodes.

Copy the docker swarm join command that was output by the previous com-
mand. Paste it into the two nodes you want to join as workers.



224 14: Deploying apps with Docker Stacks

//Worker 1 (wrk1)
wrk-1$ docker swarm join --token SWMTKN-1-2hl6...-...3lqg 172.31.40.192:2377
This node joined a swarm as a worker.

//Worker 2 (wrk2)
wrk-2$ docker swarm join --token SWMTKN-1-2hl6...-...3lqg 172.31.40.192:2377
This node joined a swarm as a worker.

3. Verify that the Swarm is configured with one manager and two workers.

Run this command from the manager node.

$ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
lhm...4nn * mgr1 Ready Active Leader
b74...gz3 wrk1 Ready Active
o9x...um8 wrk2 Ready Active

The Swarm is now ready. Let’s deploy the stack.

Deploying the sample app

Stacks are deployed using the docker stack deploy command. In its basic form it
accepts two arguments:

• name of the stack file

• name of the stack

We’ll use the compose.yaml file in the swarm-app folder of the book’s GitHub repo and
we’ll call the app ddd. Feel free to give yours a different name.

Run the following commands from swarm-app directory on the Swarm manager. If the
manager doesn’t have a copy of the GitHub repo, clone it with this command.

$ git clone https://github.com/nigelpoulton/ddd-book.git

Deploy the stack.

$ docker stack deploy -c compose.yaml ddd
Creating network ddd_counter-net
Creating service ddd_web-fe
Creating service ddd_redis
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You can run docker network ls, docker volume ls, and docker service ls
commands to see the networks, volumes, and services that were deployed as part of the
app.

A few things to note from the output of the command.

The networks and volumes were created before the services. This is because services use
these and will fail to start if they don’t exist.

Docker prefixes the name of the stack to every resource it creates. In our example, the
stack is called ddd, meaning all resources are named ddd_<resource>. For example, the
counter-net network is called ddd_counter-net.

You can verify the status of a stack with a couple of commands. docker stack ls lists
very basic info on all stacks on the system. docker stack ps <stack-name> gives more
detailed information about a specific stack. Let’s see them both.

$ docker stack ls
NAME SERVICES
ddd 2

$ docker stack ps ddd
NAME IMAGE NODE DESIRED STATE CURRENT STATE
ddd_redis.1 redis:alpine mgr1 Running Running 4 mins
ddd_web-fe.1 nigelpoulton/ddd... wrk1 Running Running 4 mins
ddd_web-fe.2 nigelpoulton/ddd... wrk2 Running Running 4 mins
ddd_web-fe.3 nigelpoulton/ddd... wrk2 Running Running 4 mins
<Snip>
ddd_web-fe.10 nigelpoulton/ddd... wrk1 Running Running 4 mins

The docker stack ps command is a good place to start when troubleshooting services
that fail to start. It gives an overview of every service in the stack, including which node
replicas are scheduled on, current state, desired state, and error messages. The following
output shows two failed attempts to start a replica for the web-fe service on the wrk2
node.

$ docker stack ps ddd
NAME NODE DESIRED CURRENT ERROR
web-fe.1 wrk-2 Shutdown Failed "task: non-zero exit (1)"
\_web-fe.1 wrk-2 Shutdown Failed "task: non-zero exit (1)"

Use the docker service logs command for more detailed logs. You pass it the service
name or ID, or a replica ID. If you pass it the service name or ID, you’ll get the logs for
all service replicas. If you pass it a particular replica ID, you’ll only get the logs for that
replica.

The following example shows the logs for all replicas in the ddd_web-fe service.
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$ docker service logs ddd_web-fe
ddd_web-fe.9.i23puo71kq12@node2 | * Serving Flask app 'app'
ddd_web-fe.5.z4otpnjrvc58@node2 | * Debug mode: on
<Snip>
ddd_web-fe.6.novrixi5iuxy@node2 | * Debug mode: on
ddd_web-fe.6.novrixi5iuxy@node2 | * Debugger is active!
ddd_web-fe.6.novrixi5iuxy@node2 | * Debugger PIN: 127-233-151

You can follow the logs (--follow), tail them (--tail), and you may be able to get extra
details (--details).

Point a browser at the app to verify it’s up and working. As it’s exposed on the swarm
ingress on port 5001 you can point a browser to any cluster node on that port. If you’re
on Docker Desktop you can use localhost:5001.

Figure 14.3

Now that the stack is up and running, let’s see how declaratively manage it.

Managing a stack

We know a stack is a set of related services and infrastructure that gets deployed and
managed as a unit. And while that’s a fancy sentence with a few buzzwords, it reminds
us that stacks are built from normal Docker resources — networks, volumes, secrets,
services, containers etc. This means we can inspect them individual components with
their normal docker commands such as docker network, docker volume, docker
service etc.

With this in mind, it’s possible to use the docker service command to manage services
that are part of the stack. A simple example would be using the docker service scale
command to increase the number of replicas in the web-fe service. However, using the



227

command line like this is called the imperativemethod and it’s not the recommended
method!

The recommended method is the declarative method. This uses the stack file as the
ultimate source of truth and demands that all changes be made by updating the stack
file and redeploying the app from the updated file.

Here’s a quick example of why the imperative method (making changes via the CLI and
individual docker commands) is bad:

Imagine we have a stack deployed from the compose.yaml file that we cloned from
GitHub earlier in the chapter. This means we have four replicas of the web-fe
service. If we use the docker service scale command scale up to 10 in order
to meet increased demand, the current state of the app will no longer match the
Compose file. If that doesn’t sound like a big problem, imagine we then edit the stack
file to use a newer image and rollout the change the recommended way with the
Compose file and the docker stack deploy command. As part of this rollout, the
number of web-fe replicas in the cluster will be rolled back to just four because we
didn’t update to the stack file to match the environment. For this kind of reason, it’s
recommended to make all changes via the stack file, and to manage the stack file in a
proper version control system.

Let’s walk through the process of making a couple of declarative changes to the stack.

We’ll make the following changes:

• Increase the number of web-fe replicas from 4 to 10
• Update the app based on a newer image called :swarm-appv2

Figure 14.4 shows the old view and the new view.

Figure 14.4

Update the compose.yaml file to reflect the changes. The relevant sections should look
like this:
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<Snip>
services:
web-fe:
image: nigelpoulton/ddd-book:swarm-appv2 <<---- changed to swarm-appv2
command: python app.py
deploy:

replicas: 4 <<---- Changed from 4 to 10
<Snip>

Save the file and redeploy the app.

$ docker stack deploy -c compose.yaml ddd
Updating service ddd_redis (id: ozljsazuv7mmh14ep70pv43cf)
Updating service ddd_web-fe (id: zbbplw0hul2gbr593mvwslz5i)

Re-deploying the app like this will only update the changed components.

Run a docker stack ps to see the progress of the update.

$ docker stack ps ddd
NAME IMAGE NODE DESIRED CURRENT STATE
ddd_redis.1 redis:alpine mgr1 Running Running 8 minutes ago
ddd_web-fe.1 nigel...app node2 Running Running 8 minutes ago
ddd_web-fe.2 nigel...appv2 node2 Running Running 13 seconds ago
\_ddd_web-fe.2 nigel...app node2 Shutdown Shutdown 26 seconds ago
ddd_web-fe.3 nigel...app node2 Running Running 8 minutes ago
<Snip>

The output has been trimmed so that it fits on the page, and only some of the replicas
are shown.

Two things happened when we re-deployed the stack:

• The web-fe service was scaled up from 4 replicas to 10

• The web-fe service was changed to use the swarm-appv2 image

Scaling up from 4 - 10 added 6 new replicas. These will be deployed with the new image
version. The existing 4 replicas will also be deleted and replaced with new ones running
the new version. This is because Docker treats replicas as immutable objects and never
makes changes to live replicas – it always deletes existing replicas and replaces them
with new ones.

Also, the process of updating the 4 existing replicas follows the update rules defined
in the Compose file — update two replicas, wait 10 seconds, update the other 2, wait
10 seconds… If any issues occur, the swarm will attempt a rollback to the previous
configuration.
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web-fe:
deploy:
update_config:

parallelism: 2
delay: 10s
failure_action: rollback

The cluster will eventually converge and current observed state will match the new desired
state of 10 replicas all on the new image. At that point, what is deployed and observed on
the cluster will exactly match what is defined in the stack file. This is a happy place to be
:-D

Check the update worked by refreshing your browser.

The update doesn’t appear to have worked as the original view is still showing! Let’s
check…

The docker stack ps command is a good place to start troubleshooting. The following
command shows that we’ve gone down to four web-fe replicas and they’re all using the
correct swarm-appv2 image. So what could be wrong?

$ docker stack ps ddd
NAME IMAGE NODE DESIRED CURRENT STATE
ddd_redis.1 redis:alpine mgr1 Running Running 18 mins
ddd_web-fe.1 nigel...swarm-appv2 node2 Running Running 10 mins
ddd_web-fe.2 nigel...swarm-appv2 node2 Running Running 10 mins
ddd_web-fe.5 nigel...swarm-appv2 node2 Running Running 10 mins
ddd_web-fe.4 nigel...swarm-appv2 node2 Running Running 10 mins

The issue is with the volume.

When the replicas were updated to run the new image, old replicas were deleted and
new ones started. However, the volume and data from the old replicas still exists and
gets mounted into the new replicas. This is overwriting the new version of the app with
the old version that’s still in the volume. Let’s walk through the process.

The new image has the updated app with the new web view. Old replicas were deleted
and new ones deployed with the new version of the app. However, at runtime the
existing volume (with the old version of the app) was mounted into the new replicas and
overwrote the new web view. This is a feature of volumes and something you should be
aware of.

Let’s assume you realise the web view is static content and doesn’t need a volume, so you
decide to remove the volume form the app. The declarative way to do this is to edit the
Compose file again, remove the volume and volume mount, and re-deploy the app. Let’s
do it.

Edit the compose.yaml file and make the following changes.
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volumes: <<---- Delete this line
counter-vol: <<---- Delete this line

<Snip>
services:
web-fe:
image: nigelpoulton/ddd-book:swarm-appv2
<Snip>
volumes: <<---- Delete this line

- type: volume <<---- Delete this line
source: counter-vol <<---- Delete this line
target: /app <<---- Delete this line

Save you changes and re-deploy.

$ docker stack deploy -c compose.yaml ddd
Updating service ddd_redis (id: ozljsazuv7mmh14ep70pv43cf)
Updating service ddd_web-fe (id: zbbplw0hul2gbr593mvwslz5i)

The stack will update two replicas at a time and wait 10 seconds between each. Once the
stack has converged and all replicas are updated you should see the new version of the
app in your browser. Hit refresh a few times to make sure it works.

The volume will still exist and will need deleting manually.

This declarative update pattern should be used for all updates. I.e., all changes should be
made declaratively via the stack file and rolled out using the docker stack deploy
command.

The correct way to delete a stack is with the docker stack rm command. Be warned
though! It deletes the stack without asking for confirmation.

$ docker stack rm ddd
Removing service ddd_redis
Removing service ddd_web-fe
Removing network ddd_counter-net

Notice that the network and services were deleted but the volume wasn’t. This is
because volumes are long-term persistent data stores and exist independent of the
lifecycle of containers, services, and stacks.

Congratulations. You know how to deploy and manage a multi-service app using
Docker Stacks.

Deploying apps with Docker Stacks - The Commands

• docker stack deploy is the command for deploying and updating stacks of
services defined in a stack file (usually called compose.yaml).
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• docker stack ls lists all stacks on the Swarm, including how many services they
have.

• docker stack ps gives detailed information about a deployed stack. It accepts the
name of the stack as its main argument, lists which node each replica is running
on, and shows desired state and current state.

• docker stack rm deletes a stack from the Swarm. It does not ask for confirmation
before deleting the stack.

Chapter Summary

Stacks are the native Docker solution for deploying and managing cloud-native
microservices applications. They require swarm mode and offer a simple declarative
interface for managing the entire lifecycle of applications and infrastructure.

You start with application code and a set of infrastructure requirements — things like
networks, ports, volumes, and secrets. You containerize the application and group
together all of the app services and infrastructure requirements into a single declarative
stack file. You set the number of replicas, as well as rollout and restart policies. You then
deploy the application from the stack file using the docker stack deploy command.

Future updates to the app should be done declaratively by checking the stack file out
of source control, updating it, re-deploying the app from it, and checking it back into
source control.

Because the stack file defines things like number of service replicas, you should maintain
separate stack files for each of your environments, such as dev, test, and prod.





15: Security in Docker
Good security is all about layers and defence in depth. Docker supports all the major Linux
security technologies as well as plenty of its own.

In this chapter, we’ll look at some of the technologies that make running containers very
secure.

Large parts of the chapter will be specific to Linux. However, theDocker security
technologies section is platform agnostic and applies equally to Linux and Windows.

Security in Docker - The TLDR

Security is about layers, and more layers = more secure. Fortunately, we can apply
lots of layers of security to Docker. Figure 15.1 shows some of the security-related
technologies we’ll cover in the chapter.

Figure 15.1

Docker on Linux leverages most of the common Linux security and workload isolation
technologies. These include namespaces, control groups, capabilities, mandatory access control
(MAC), and seccomp. For each one, Docker ships with “sensible defaults” for a moderately
secure out-of-the-box experience. However, you can customize each one to your own
specific requirements.
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Docker also adds some of its own excellent security technologies. One of the best things
about the Docker security technologies is that they’re amazingly simple to use.

Docker SwarmMode is secure by default. You get all of the following out of the box:
cryptographic node IDs, mutual authentication, automatic CA configuration, automatic
certificate rotation, encrypted cluster store, encrypted networks, and more.

Image vulnerability scanning analyses images, detects known vulnerabilities, and
provides detailed reports and fixes.

Docker Content Trust (DCT) lets us sign our own images and verify the integrity and
publisher of images we consume.

Docker secrets let us securely share sensitive data with applications. They’re stored in
the encrypted cluster store, encrypted over the network, kept in in-memory filesystems
when in use, and operate a least-privilege model.

Others exist, but the important thing to know is that Docker works with the major
Linux security technologies as well as providing its own extensive and growing set of
security technologies. While the Linux security technologies tend to be complex, the
native Docker security technologies tend to be simple.

Security in Docker - The deep dive

We all know that security is important. We also know that security can be complicated
and boring.

When Docker decided to bake security into the platform, it decided to make it simple
and easy. They knew that if security was hard, people wouldn’t use it. As a result, most
of the security technologies offered by the Docker platform are easy to use. They also
ship with sensible defaults — meaning we get a fairly secure platform at zero effort. Of
course, the defaults aren’t perfect, but they’re a good starting point.

We’ll organize the rest of this chapter as follows:

• Linux security technologies
– Namespaces
– Control Groups
– Capabilities
– Mandatory Access Control
– seccomp

• Docker platform security technologies
– SwarmMode
– Vulnerability scanning
– Docker Content Trust
– Docker secrets
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Linux security technologies

All good container platforms use namespaces and cgroups to build containers. The best
container platforms integrate with other Linux security technologies such as capabilities,
Mandatory Access Control systems like SELinux and AppArmor, and seccomp. As expected,
Docker integrates with them all.

In this section, we’ll take a quick look at some of the major Linux security technologies
used by Docker. We won’t go into detail, as I want the main focus of the chapter to be on
the security technologies Docker adds.

Namespaces

Kernel namespaces are the main technology used to build containers.

They virtualise operating system constructs such as process trees and filesystems in the
same way that hypervisors virtualise physical resources such as CPUS and disks. In the
VMmodel, hypervisors create virtual machines by grouping together things like virtual
CPUs, virtual disks, and virtual network cards. Each VM looks, smells, and feels exactly
like a physical machine. In the container model, namespaces create virtual operating
systems by grouping together things like virtual process trees, virtual filesystems, and
virtual network interfaces. Each virtual OS is called a container and looks, smells, and
feels exactly like a regular OS.

This virtual OS (“container”) lets us do really cool things like run multiple web servers
on the same host without having port conflicts. It also lets us run multiple apps on the
same host without them fighting over shared config files and shared libraries.

A couple of quick examples:

• Namespaces let us run multiple web servers, each on port 443, on a single host
with a single OS. To do this we run each web server inside its own network
namespace. This works because each network namespace gets its own IP address and
full range of ports. You may have to map each one to a separate port on the Docker
host, but each can run without being re-written or reconfigured to use a different
port.

• We can run multiple applications, each with their own versions of shared libraries
and configuration files. To do this, we run each application inside of its ownmount
namespace. This works because each mount namespace can have its own isolated
copy of any directory such as /etc, /var, or /dev.

Figure 15.2 shows a high-level example of two web server applications running on a
single host and both using port 443. Each web server app is running inside of its own
network namespace.
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Figure 15.2

Note: The isolation provided by namespaces isn’t strong. They need help
from some of the other technologies we’re going to mention.

Working directly with namespaces is hard. Fortunately, Docker does all the hard work
for us and hides all the complexity behind the docker run command and an easy-to-use
API.

Docker on Linux currently utilizes the following kernel namespaces:

• Process ID (pid)

• Network (net)

• Filesystem/mount (mnt)

• Inter-process Communication (ipc)

• User (user)

• UTS (uts)

We’ll explain what each one does in a moment. However, the most important thing to
understand is that containers are an organized collection of namespaces. For example,
every container has its own pid, net, mnt, ipc, uts, and possibly user namespace. In
fact, an organized collection of these namespaces is what we call a “container”. Figure
15.3 shows a single Linux host running two containers. The host has its own collection
of namespaces we call the “root namespaces”. Each container has its own collection of
isolated namespaces.
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Figure 15.3

Let’s briefly look at how Docker uses each namespace:

• Process ID namespace: Docker uses the pid namespace to provide isolated
process trees for each container. This means every container gets its own PID 1.
It also means one container cannot see or access the processes running in other
containers. Nor can a container see or access the processes running on the host.

• Network namespace: Docker uses the net namespace to provide each container
its own isolated network stack. This stack includes interfaces, IP addresses,
port ranges, and routing tables. For example, every container gets its own eth0
interface with its own unique IP and range of ports.

• Mount namespace: Every container gets its own unique isolated root (/) filesystem.
This means every container can have its own /etc, /var, /dev and other important
filesystem constructs. Processes inside a container cannot access the filesystems
on the host or other containers — they can only see and access their own isolated
filesystem.

• Inter-process Communication namespace: Docker uses the ipc namespace
for shared memory access within a container. It also isolates the container from
shared memory outside the container.

• User namespace: Docker lets you use user namespaces to map users inside a
container to different users on the Linux host. A common example is mapping a
container’s root user to a non-root user on the Linux host.

• UTS namespace: Docker uses the uts namespace to provide each container with
its own hostname.

Remember, a container is a collection of namespaces that looks like a regular OS, and
Docker makes it really easy to use.
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Control Groups

If namespaces are about isolation, control groups (cgroups) are about limits.

Think of containers as similar to rooms in a hotel. While each room might appear
isolated, each one shares a common set of infrastructure resources — things like water
supply, electricity supply, shared swimming pool, shared gym, shared elevators, shared
breakfast bar… Cgroups let us set limits so that (sticking with the hotel analogy) no
single container can use all of the water or eat everything at the breakfast bar.

In the real world, not the hotel analogy, containers are isolated from each other but
all share a common set of resources — things like CPU, RAM, network and disk I/O.
Cgroups let us set limits so a single container cannot consume them all and cause a
denial of service (DoS) attack.

Capabilities

It’s a bad idea to run containers as root— root is the most powerful user account on a
Linux system and therefore very dangerous. However, it’s not as simple as just running
containers as regular non-root users. For example, on most Linux systems, non-root
users tend to be so powerless they’re practically useless. What’s needed, is a way to pick-
and-choose the specific root powers a container needs in order to run.

Enter capabilities!

Under the hood, the Linux root user is a combination of a long list of capabilities. Some
of these capabilities include:

• CAP_CHOWN: lets you change file ownership

• CAP_NET_BIND_SERVICE: lets you bind a socket to low numbered network ports

• CAP_SETUID: lets you elevate the privilege level of a process

• CAP_SYS_BOOT: lets you reboot the system.

The list goes on and is long.

Docker works with capabilities so that you can run containers as root but strip out all
the capabilities that aren’t needed. For example, if the only root capability a container
needs is the ability to bind to low numbered network ports, we start a container, drop all
root capabilities, then add back just the CAP_NET_BIND_SERVICE capability.

This is an excellent example of implementing least privilege—we get a container running
with only the capabilities we actually need. Docker also imposes restrictions so that
containers cannot re-add dropped capabilities.

While this is great, configuring the correct set of capabilities requires a lot of effort and
testing.
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Mandatory Access Control systems (MAC)

Docker works with major Linux MAC technologies such as AppArmor and SELinux.

Depending on your Linux distribution, Docker applies default profiles to all new con-
tainers. According to the Docker documentation, these default profiles are “moderately
protective while providing wide application compatibility”.

Docker also lets you start containers without policies, as well as giving you the ability
to customize policies to meet specific requirements. This is very powerful but can be
prohibitively complex.

seccomp

Docker uses seccomp to limit the syscalls a container can make to the host’s kernel. At
the time of writing, Docker’s default seccomp profile disables 44 syscalls. Modern Linux
systems have over 300 syscalls.

As per the Docker security philosophy, all new containers get a default seccomp profile
configured with sensible defaults. As with MAC policies, default seccomp policies are
designed to provide moderate security without impacting application compatibility.

As always, you can customize seccomp profiles, and you can pass a flag to Docker so that
containers can be started without one.

As with many of the technologies already mentioned, seccomp is extremely powerful.
However, the Linux syscall table is long, and configuring the appropriate seccomp
policies can be prohibitively complex.

Final thoughts on the Linux security technologies

Docker supports most of the important Linux security technologies and ships with
sensible defaults that add security but aren’t too restrictive. Figure 15.4 shows how these
technologies help build a defense in depth security posture.
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Figure 15.4

Some of these technologies can be complicated to customize as they require deep
knowledge of how the Linux kernel works. They’re getting simpler to configure, and
many platforms, including Docker, ship with defaults that are a good place to start.

Docker security technologies

Let’s take a look at some of the major security technologies offered by Docker.

Security in Swarm Mode

Docker Swarm allows you to cluster multiple Docker hosts and deploy applications
declaratively. Every Swarm comprises managers and workers that can be Linux or Win-
dows. Managers host the control plane and are responsible for configuring the cluster
and dispatching work tasks. Workers are the nodes that run application containers.

As expected, swarm mode includes many security features that are enabled out-of-the-
box with sensible defaults. These include:

• Cryptographic node IDs

• TLS for mutual authentication

• Secure join tokens

• CA configuration with automatic certificate rotation
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• Encrypted cluster store

• Encrypted networks

Let’s walk through the process of building a secure swarm and configuring some of the
security aspects.

To follow along with the complete set of examples you’ll need three Docker hosts.
The examples use three hosts called “mgr1”, “mgr2”, and “wrk1”. There is network
connectivity between all three hosts and all three can ping each other by name.

Configure a secure Swarm

Run the following command from the node you want to be the first manager in the new
swarm. We’ll run the example frommgr1.

$ docker swarm init

Swarm initialized: current node (7xam...662z) is now a manager.
To add a worker to this swarm, run the following command:

docker swarm join --token \
SWMTKN-1-1dmtwu...r17stb-ehp8g...hw738q 172.31.5.251:2377

To add a manager to this swarm, run 'docker swarm join-token manager'
and follow the instructions.

That’s it! That’s literally all you need to do to configure a secure swarm.

mgr1 is configured as the first manager of the swarm and also as the root certificate
authority (CA). The swarm itself has been given a cryptographic cluster ID.mgr1
has issued itself with a client certificate that identifies it as a manager, certificate
rotation has been configured with the default value of 90 days, and a cluster database
has been configured and encrypted. A set of secure tokens have also been created so
that additional managers and workers can be securely joined. All of this with a single
command!

Figure 15.5 shows how the lab currently looks. Some of the details may be different in
your lab.
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Figure 15.5

Let’s joinmgr2 as an additional manager.

Joining new managers to a swarm is a two-step process. The first step extracts the token.
The second step runs the docker swarm join command on the node we’re adding. As
long as we include the manager join token as part of the command,mgr2 will join the
swarm as a manager.

Run the following command frommgr1 to extract the manager join token.

$ docker swarm join-token manager
To add a manager to this swarm, run the following command:

docker swarm join --token \
SWMTKN-1-1dmtwu...r17stb-2axi5...8p7glz \
172.31.5.251:2377

The output gives us the exact command to run on nodes to join them as managers. The
join token and IP address will be different in your lab.

The format of the join command is:

• docker swarm join --token <manager-join-token> <ip-of-existing-
manager>:<swarm-port>

The format of the token is:

• SWMTKN-1-<hash-of-cluster-certificate>-<manager-join-token>

Copy the command and run it on “mgr2”:
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$ docker swarm join --token SWMTKN-1-1dmtwu...r17stb-2axi5...8p7glz \
> 172.31.5.251:2377

This node joined a swarm as a manager.

mgr2 has joined the swarm as an additional manager. In production clusters you should
always run either 3 or 5 managers for high availability.

Verify it was successfully added by running a docker node ls on either of the two
managers.

$ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
7xamk...ge662z mgr1 Ready Active Leader
i0ue4...zcjm7f * mgr2 Ready Active Reachable

The output shows thatmgr1 andmgr2 are both part of the swarm and are both
managers. The updated configuration is shown in Figure 15.6.

Figure 15.6

Adding a swarm worker is a similar two-step process – extract the join token and run
the command on the node.

Run the following command on either of the managers to expose the worker join token.
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$ docker swarm join-token worker

To add a worker to this swarm, run the following command:

docker swarm join --token \
SWMTKN-1-1dmtw...17stb-ehp8g...w738q \
172.31.5.251:2377

Copy the command and run it onwrk1 as shown:

$ docker swarm join --token SWMTKN-1-1dmtw...17stb-ehp8g...w738q \
> 172.31.5.251:2377

This node joined a swarm as a worker.

Run another docker node ls command from either of the managers.

$ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
7xamk...ge662z * mgr1 Ready Active Leader
ailrd...ofzv1u wrk1 Ready Active
i0ue4...zcjm7f mgr2 Ready Active Reachable

We now have a swarm with two managers and one worker. The managers are con-
figured for high availability (HA) and the cluster store is replicated to both. The final
configuration is shown in Figure 15.7.

Figure 15.7
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Looking behind the scenes at Swarm security

Now that we’ve built a secure Swarm, let’s take a minute to look behind the scenes at
some of the security technologies involved.

Swarm join tokens

The only thing that’s needed to join new managers and workers to an existing swarm is
the correct join token. This means it’s vital that we keep our join-tokens safe. Never post
them on public GitHub repos or even internal source code repos that are not restricted.

Every swarm maintains two distinct join tokens:

• One for joining new managers

• One for joining new workers

Every join token has 4 distinct fields separated by dashes (-):

PREFIX - VERSION - SWARM ID - TOKEN

The prefix is always SWMTKN. This allows you to pattern-match against it and prevent
people from accidentally posting it publicly. The VERSION field indicates the version of
the swarm. The Swarm ID field is a hash of the swarm’s certificate. The TOKEN field is
worker or manager token.

As the following shows, the manager and worker join tokens for a Swarm are identical
except for the final TOKEN field.

• MANAGER: SWMTKN-1-1dmtwusdc...r17stb-2axi53zjbs45lqxykaw8p7glz

• WORKER: SWMTKN-1-1dmtwusdc...r17stb-ehp8gltji64jbl45zl6hw738q

If you suspect that either of your join tokens has been compromised, you can revoke
them and issue new ones with a single command. The following example revokes the
existing manager join token and issues a new one.

$ docker swarm join-token --rotate manager

Successfully rotated manager join token.

You don’t need to update existing managers, but any new managers will need to be
added with the new token.

Notice that the only difference between the old and new tokens is the last field. The hash
of the Swarm ID remains the same.

Join tokens are stored in the cluster store which is encrypted by default.
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TLS and mutual authentication

Every manager and worker that joins a swarm is issued a client certificate that is used
for mutual authentication. It identifies the node, the swarm that it’s a member of, and
whether it’s a manager or worker.

You can inspect a node’s client certificate on Linux with the following command.

$ sudo openssl x509 \
-in /var/lib/docker/swarm/certificates/swarm-node.crt \
-text

Certificate:
Data:

Version: 3 (0x2)
Serial Number:

7c:ec:1c:8f:f0:97:86:a9:1e:2f:4b:a9:0e:7f:ae:6b:7b:b7:e3:d3
Signature Algorithm: ecdsa-with-SHA256
Issuer: CN = swarm-ca
Validity

Not Before: May 23 08:23:00 2023 GMT
Not After : Aug 21 09:23:00 2023 GMT

Subject: O = tcz3w1t7yu0s4wacovn1rtgp4, OU = swarm-manager,
CN = 2gxz2h1f0rnmc3atm35qcd1zw

Subject Public Key Info:
<SNIP>

The Subject data in the output uses the standard O, OU, and CN fields to specify the
Swarm ID, the node’s role, and the node ID.

• The Organization (O) field stores the Swarm ID

• The Organizational Unit (OU) field stores the node’s role in the swarm

• The Canonical Name (CN) field stores the node’s crypto ID.

This is shown in Figure 15.8.
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Figure 15.8

You can also see the certificate rotation period in the Validity section.

You can match these values to the corresponding values shown in the output of a docker
info command.

$ docker info
<SNIP>
Swarm: active
NodeID: 2gxz2h1f0rnmc3atm35qcd1zw # Relates to the CN field
Is Manager: true # Relates to the OU field
ClusterID: tcz3w1t7yu0s4wacovn1rtgp4 # Relates to the O field

<SNIP>
CA Configuration:
Expiry Duration: 3 months # Relates to validity field
Force Rotate: 0
Root Rotation In Progress: false

<SNIP>

Configuring some CA settings

You can configure the certificate rotation period for the Swarm with the docker swarm
update command. The following example changes the certificate rotation period to 30
days.

$ docker swarm update --cert-expiry 720h

Swarm allows nodes to renew certificates early so that all nodes don’t try and update at
the same time.

You can configure an external CA when creating a new swarm by passing the --
external-ca flag to the docker swarm init command.

The docker swarm ca command can also be used to manage CA related configuration.
Run the command with the --help flag to see a list of things it can do.
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$ docker swarm ca --help

Usage: docker swarm ca [OPTIONS]

Display and rotate the root CA

Options:
--ca-cert pem-file Path to the PEM-formatted root CA

certificate to use for the new cluster
--ca-key pem-file Path to the PEM-formatted root CA

key to use for the new cluster
--cert-expiry duration Validity period for node certificates

(ns|us|ms|s|m|h) (default 2160h0m0s)
-d, --detach Exit immediately instead of waiting for

the root rotation to converge
--external-ca external-ca Specifications of one or more certificate

signing endpoints
-q, --quiet Suppress progress output

--rotate Rotate the swarm CA - if no certificate
or key are provided, new ones will be generated

The cluster store

The cluster store is where swarm config and state are stored. It’s also critical to other
Docker technologies such as overlay networks and secrets. This is why swarm mode is
required for so many advanced and security-related features.

The store is currently based on the popular etcd distributed database and is automati-
cally configured to replicate to all managers. It is also encrypted by default.

Day-to-day maintenance of the cluster store is taken care of automatically by Docker.
However, in production environments, you should have strong backup and recovery
solutions in place.

That’s enough for now about swarm mode security. The remainder of the chapter will
focus on Docker-related security technologies that don’t require swarm mode.

Image vulnerability scanning

Vulnerability scanning is a major weapon against vulnerabilities and security issues in
images.

Scanners work by building a list of all software in an image and then comparing the
packages against databases of known vulnerabilities. Most vulnerability scanners will
rank vulnerabilities and provide advice and help on fixes.

As good as vulnerability scanning is, it’s important to understand the limitations. For
example, scanning is focussed on images and doesn’t detect security problems with
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networks, nodes, or orchestrators. Also, not all image scanners are equal — some
perform deep binary-level scans to detect packages, whereas others simply look at
package names and do not closely inspect content.

At the time of writing, Docker Hub offers image scanning for certain paid accounts. This
may change in the future. Some on-premises private registries offer built-in scanning,
and there are third-party services that offer image scanning services. Docker Desktop
also supports extensions that scan images.

Figure 15.9 shows what a scan result looks like on Docker Hub. Figure 15.10 shows
what it looks like with the Trivy Docker Desktop extension.

Figure 15.9
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Figure 15.10

In summary, image vulnerability scanning can be a great tool for deeply inspecting your
images for known vulnerabilities. Beware though, with great knowledge comes great
responsibility — once you become aware of vulnerabilities, you become responsible for
mitigating or fixing them.

Signing and verifying images with Docker Content Trust

Docker Content Trust (DCT) makes it simple and easy to verify the integrity and the
publisher of images. This is especially important when pulling images over untrusted
networks such as the internet.

At a high level, DCT allows developers to sign images when they are pushed to Docker
Hub or other container registries. These images can then be verified when they are
pulled and ran. This high-level process is shown in Figure 15.11
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Figure 15.11

DCT can also be used to provide context. This includes whether or not an image has
been signed for use in a particular environment such as “prod” or “dev”, or whether an
image has been superseded by a newer version and is therefore stale.

The following steps will walk you through configuring Docker Content Trust, signing
and pushing an image, and then pulling the signed image.

To follow along, you’ll need a cryptographic key-pair to sign images. If you don’t already
have one, you can use the docker trust command to generate one. The following
command generates a new key-pair called “nigel” and loads it to the local trust store
ready for use.

$ docker trust key generate nigel
Generating key for nigel...
Enter passphrase for new nigel key with ID 1f78609:
Repeat passphrase for new nigel key with ID 1f78609:
Successfully generated and loaded private key.... public key available: /root/nigel.pub

If you already have a key-pair, you can import and load it with docker trust key load
key.pem --name nigel.

Now that we’ve loaded a valid key-pair, we’ll associate it with the image repository we’ll
push signed images to. This example uses the nigelpoulton/ddd-trust repo on Docker
Hub and the nigel.pub key that was created in the previous step. Your key file and repo
will be different and the repository doesn’t have to exist before you run the command.
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$ docker trust signer add --key nigel.pub nigel nigelpoulton/ddd-trust
Adding signer "nigel" to nigelpoulton/dct...
Initializing signed repository for nigelpoulton/dct...
Enter passphrase for root key with ID aee3314:
Enter passphrase for new repository key with ID 1a18dd1:
Repeat passphrase for new repository key with ID 1a18dd1:
Successfully initialized "nigelpoulton/dct"
Successfully added signer: nigel to nigelpoulton/dct

The following command will sign the nigelpoulton/ddd-trust:signed image and
push it to Docker Hub. You’ll need to tag an image on your system with the name of the
repo you just associated your key-pair with. I’ll push the signed image.

$ docker trust sign nigelpoulton/ddd-trust:signed
docker trust sign nigelpoulton/ddd-trust:signed
Signing and pushing trust data for local image nigelpoulton/ddd-trust:signed...
The push refers to repository [docker.io/nigelpoulton/ddd-trust]
94dd7d531fa5: Mounted from library/alpine
signed: digest: sha256:30e6d35703c578e...4fcbbcbb0f281 size: 528
Signing and pushing trust metadata
Enter passphrase for nigel key with ID 4d6f1bf:
Successfully signed docker.io/nigelpoulton/ddd-trust:signed

The push operation will create the repo on Docker Hub and push the image. You can
inspect its signing data with the following command.

$ docker trust inspect nigelpoulton/ddd-trust:signed --pretty

Signatures for nigelpoulton/ddd-trust:signed
SIGNED TAG DIGEST SIGNERS
signed 30e6d35703c578ee...4fcbbcbb0f281 nigel

List of signers and their keys for nigelpoulton/ddd-trust:signed
SIGNER KEYS
nigel 4d6f1bf55702

Administrative keys for nigelpoulton/ddd-trust:signed
Repository Key: 5e72e54afafb8444f...6b2744b32010ad22
Root Key: 40418fc47544ca630...69a2cb89028c22092

You can force a Docker host to always sign and verify image push and pull operations
by exporting the DOCKER_CONTENT_TRUST environment variable with a value of 1. In the
real world, you’ll want to make this a more permanent feature of Docker hosts.

$ export DOCKER_CONTENT_TRUST=1
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Once DCT is enabled like this, you’ll no longer be able to pull and work with unsigned
images. You can test this behavior by attempting to pull an unsigned image.

Docker Content Trust is an important technology for helping you verify the images
you pull from container registries. It’s simple to configure in its basic form, but more
advanced features, such as context, can be more complex to configure.

Docker Secrets

Many applications have sensitive data such as passwords, certificates, and SSH keys.

Early versions of Docker had no way of making sensitive data like this available to apps
in a secure way. We often inserted them into apps via plain text environment variables
(we’ve all done it). Fortunately, modern Docker installations support Docker secrets.

Note: Secrets require swarm as they leverage the cluster store.

Behind the scenes, secrets are encrypted at rest, encrypted over the network, mounted
into containers via in-memory filesystems, and operate a least-privilege model where
they’re only made available to services that have been explicitly granted access. There’s
even a docker secret sub-command.

Figure 15.12 shows a high-level workflow:

Figure 15.12
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The following steps walk through the workflow shown in Figure 15.12. The secret is
shown as the key symbol and the container icons with the dashed line are not part of the
service that has access to the secret.

1. The secret is created and posted to the Swarm

2. It’s stored in the encrypted cluster store

3. The service is created and the secret is attached to it

4. The secret is encrypted over the network while it’s delivered to service replicas

5. The secret is mounted into service replicas as an unencrypted file in an in-memory
filesystem

As soon as replicas complete, the in-memory filesystem is torn down and the secret
flushed from the node. The containers drawn with a dashed lines are not part of the
same service and cannot access the secret.

The reason secrets are mounted in their un-encrypted form is so that applications can
use them without needing keys to decrypt them.

You can create and manage secrets with the docker secret command. You can then
attach them to services by passing the --secret flag to the docker service create
command.

Chapter Summary

Docker can be configured to be extremely secure. It supports all of the major Linux
security technologies such as kernel namespaces, cgroups, capabilities, MAC, and
seccomp. It ships with sensible defaults for all of these, but you can customize them and
even disable them.

Over and above the general Linux security technologies, Docker includes an extensive
set of its own security technologies. Swarms are built on TLS and are secure out of the
box. Scanning tools perform binary-level scans of images and provide detailed reports
of known vulnerabilities and suggested fixes. Docker Content Trust lets you sign and
verify content, and Docker secrets allow you to securely share sensitive data with swarm
services.

The net result is that your Docker environment can be configured to be as secure or
insecure as you desire — it all depends on how you configure it.
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Massive thanks for reading my book. You’re on your way to mastering containers!

About the front cover

I love the cover of this book and I’m grateful for the hundreds of people who voted for
the design.

The YAML code on the left represents the technical nature of the book. The Docker
whale represents the main topic. The vertical symbols on the right are container-related
icons done in the style of digital rain from the Matrix movies. There’s also a hidden
message written in Klingon.

Get involved with the community

There’s a vibrant container community full of helpful people. Get involved with Docker
groups and chats on the internet, and look-up your local Docker or cloud-native meetup
(search for “Docker meetup near me”).

Kubernetes

Now that you know a thing or two about Docker, a great next-step is Kubernetes – it’s a
lot like Swarm but has a larger scope and a more active community.

If you liked this book, you’ll love my books on Kubernetes.

Feedback and reviews

Books live and die by Amazon reviews and stars.

I’ve spent well-over a year of my life writing this book and keeping it up-to-date.
Soooo… I’d love it if you left a review on Amazon.

Ping me at ddd@nigelpoulton.com if you want to suggest content or fixes for future
editions.







The KCNA Book is a comprehensive guide to prepare
readers for the Kubernetes and Cloud Native Associate
(KCNA) certification, offering concise explanations, quizzes,
and a sample exam to master Kubernetes and cloud-native
technologies.

The Kubernetes Book is the go-to guide for mastering
Kubernetes and the highest-rated book on Amazon for
systems administration and cloud computing. It offers the
most precise explanations and practical examples to help
software developers, systems administrators, cloud
engineers, and architects learn Kubernetes.

Quick Start Kubernetes is the perfect resource to get you up
to speed in less than a day. This beginner-friendly guide
covers everything from the basics of Kubernetes architecture
to features like Pods, Deployments, and Services. At around
100 pages, it's easy to read and understand.

Thanks for reading Docker Deep Dive, I really hope it was useful! It would mean a lot if you
would rate and review on Amazon and Goodreads. 

I'm always open to feedback and connecting with others in the field. 
You can find me on Twitter, Mastodon, LinkedIn and email.  

@nigelpoulton 

nigelpoulton.com/books 

ddd@nigelpoulton.com
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